20 research outputs found

    The SPARC Toroidal Field Model Coil Program

    Full text link
    The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper Oxide (REBCO) superconductor technologies and then successfully utilized these technologies to design, build, and test a first-in-class, high-field (~20 T), representative-scale (~3 m) superconducting toroidal field coil. With the principal objective of demonstrating mature, large-scale, REBCO magnets, the project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal of experimentally demonstrating a large-scale high-field REBCO magnet, achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815 kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical stress accommodated by the structural case. Fifteen internal demountable pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in magnetic fields up to 12 T. The DC and AC electromagnetic performance of the magnet, predicted by new advances in high-fidelity computational models, was confirmed in two test campaigns while the massively parallel, single-pass, pressure-vessel style coolant scheme capable of large heat removal was validated. The REBCO current lead and feeder system was experimentally qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using passive, self-protection against a quench in a fusion-scale NI TF coil was experimentally assessed with an intentional open-circuit quench at 31.5 kA terminal current.Comment: 17 pages 9 figures, overview paper and the first of a six-part series of papers covering the TFMC Progra

    Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2

    No full text
    Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (EMT2) that took place about 53.5 Myr ago2, are associated with rapid increases in atmospheric CO2 content. However, the impacts of most events are documented only locally86. Here we show, on the basis of estimates from the TEX 86 ′ proxy, that sea surface temperatures rose by 3-5 C in the Arctic Ocean during the EMT2. Dinoflagellate fossils demonstrate a concomitant freshening and eutrophication of surface waters, which resulted in euxinia in the photic zone. The presence of palm pollen implies5 that coldest month mean temperatures over the Arctic land masses were no less than 8 C, in contradiction of model simulations that suggest hyperthermal winter temperatures were below freezing6. In light of our reconstructed temperature and hydrologic trends, we conclude that the temperature and hydrographic responses to abruptly increased atmospheric CO2 concentrations were similar for the ETM2 and the better-described Palaeocene-Eocene Thermal Maximum7,8, 55.5 Myr ago. © 2009 Macmillan Publishers Limited. All rights reserved

    Testicular Steroidogenesis

    No full text
    Testosterone is the major androgen in circulation in male humans, produced primarily in the Leydig cells of the testis. Biosynthesis of testosterone from cholesteroloccursviaaseriesofenzymaticreactions.Testosteronemaybefurther metabolized into a more potent androgen, dihydrotestosterone. In recent years an alternate pathway of dihydrotestosterone biosynthesis without using testosterone as a precursor has emerged. Majority of classically studied effects of androgens are thought to be mediated via nuclear receptor-dependent long-term transcriptional effects, but there also exist membrane receptor-based effects of androgens which are being uncovered from recent studies that may explain rapid effects of androgens in many cases. In this chapter we are describing the biosynthesis, mechanism of action, and therapeutic effects of testosterone and related androgens
    corecore