68 research outputs found

    CHOP Mediates Endoplasmic Reticulum Stress-Induced Apoptosis in Gimap5-Deficient T Cells

    Get PDF
    Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells

    Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene

    Get PDF
    rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF. f/f rat line, DRF. f/f rats were crossed to inbred BBDR or DR. lyp/lyp rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR. f/f congenic sublines further refined the RNO4 region 1 interval to ϳ670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF. f/f sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but Ͻ20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR V␤ 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4. type 1 diabetes; BB rat; T cell receptor; autoimmune CHARACTERISTICS OF TYPE 1 DIABETES (T1D) in both human and the BioBreeding spontaneously diabetes-prone (BBDP) rat include polyuria, hyperglycemia, ketoacidosis, insulitis, and insulin dependency for life. As in human T1D, islets are infiltrated by mononuclear cells at the time of onset with rapid hyperglycemia due to a complete loss of islet ␤-cells (32). The genetic etiology of human T1D remains complex and although the major histocompatibility complex (MHC) (HLA DQ) on chromosome 6 accounts for ϳ40% of T1D risk, the number of non-HLA genetic factors is increasing steadily (2, 7). The BB rat offers a powerful model to dissect both genetic contributions and mechanisms by which immunemediated beta cell killing induces T1D (3, 4, 15, 17-21, 27, 28, 46). As in humans, the major genetic determinant of susceptibility in the BB rat is the MHC (Iddm1) on rat chromosome (RNO) 20. The class II MHC locus RT1B/D. u/u ), an ortholog of human HLA DQ (9), is necessary but not sufficient for T1D in the BBDP rat and other RT1. u/u -related rat strains with spontaneous (24, 47) or induced T1D (8, 43). In BBDP, a null mutation in the gimap5 gene (lyp; Iddm2) on RNO4 (14, 27) causes lymphopenia and is tightly linked to spontaneous T1D development. The DR. lyp/lyp rat with 2 Mb of BBDP DNA encompassing gimap5 introgressed into the genome of related BBDR rats (BioBreeding resistant to spontaneous T1D) are also 100% lymphopenic and 100% spontaneously diabetic (11). With complete T1D penetrance and tight regulation of onset, the congenic DR. lyp/lyp rat line offers distinct advantages in identification of genes responsible for disease progression. It is possible to induce T1D in BBDR rats (32) and related RT1 u/u rats (8) by administration of polyinosinic: polycytidylic acid (poly I:C, an activator of innate immunity), the T reg depleting cytotoxic DS4.23 anti-ART2.1 (formerly RT6) monoclonal antibody or by viral infection (34). This indicates that the BBDR has an underlying genetic susceptibility to T1D. In crosses between WF and either BBDP or BBDR rats, a quantitative trait locus (QTL) important for induced T1D (Iddm14, previously designated Iddm4) was mapped to RNO4 (6, Interestingly, F344 DNA introgressed between D4Rat253 and D4Rhw6 into the congenic DR. lyp/lyp genetic background resulted in a lymphopenic but nondiabetic rat (designated DRF. f/f ) (11). Protection from T1D in the DRF. f/f congenic rat line led us to conclude that spontaneous T1D in the BB rat is controlled, in part, by a diabetogenic factor(s) independent of the gimap5 mutation (76.84 Mb) on RNO4. This congenic interval is encompassed within Iddm14, raising the possibility that the Iddm14 locus could be required for both spontaneous and induced T1D in the BB rat. The aim of this study was to cross the DRF. f/f rat to BBDR and DR. lyp/lyp rats and produce recombinant sublines that could be assessed for both lymphopenia and diabetes and to estimate the number of independent genes on RNO4 that control spontaneous T1D

    Diabetes in Danish Bank Voles (M. glareolus): Survivorship, Influence on Weight, and Evaluation of Polydipsia as a Screening Tool for Hyperglycaemia

    Get PDF
    BACKGROUND: Previous studies have concluded that the development of polydipsia (PD, a daily water intake ≥ 21 ml) among captive Danish bank voles, is associated with the development of a type 1 diabetes (T1D), based on findings of hyperglycaemia, glucosuria, ketonuria/-emia, lipemia, destroyed beta cells, and presence of autoantibodies against GAD65, IA-2, and insulin. AIM AND METHODS: We retrospectively analysed data from two separate colonies of Danish bank voles in order to 1) estimate survivorship after onset of PD, 2) evaluate whether the weight of PD voles differed from non-PD voles, and, 3), evaluate a state of PD as a practical and non-invasive tool to screen for voles with a high probability of hypeglycaemia. In addition, we discuss regional differences related to the development of diabetes in Scandinavian bank voles and the relevance of the Ljungan virus as proposed etiological agent. RESULTS: We found that median survival after onset of PD is at least 91 days (lower/upper quartiles = 57/134 days) with a maximum recording of at least 404 days survivorship. The development of PD did not influence the weight of Danish bank voles. The measures of accuracy when using PD as predictor of hyperglycaemia, i.e. sensitivity, specificity, positive predictive value, and negative predictive value, equalled 69%, 97%, 89%, and 89%, respectively. CONCLUSION: The relatively long survival of Danish PD bank voles suggests potentials for this model in future studies of the long-term complications of diabetes, of which some observations are mentioned. Data also indicates that diabetes in Danish bank is not associated with a higher body weight. Finally, the method of using measurements of daily water intake to screen for voles with a high probability of hyperglycaemia constitutes a considerable refinement when compared to the usual, invasive, methods

    ATP-Dependent Unwinding of U4/U6 snRNAs by the Brr2 Helicase Requires the C Terminus of Prp8

    Get PDF
    The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome

    Fluid and Electrolyte Disturbances

    No full text
    corecore