132 research outputs found

    Attosecond sampling of arbitrary optical waveforms

    Get PDF
    Advances in the generation of ultrashort laser pulses, and the emergence of new research areas such as attosecond science, nanoplasmonics, coherent control, and multidimensional spectroscopy, have led to the need for a new class of ultrafast metrology that can measure the electric field of complex optical waveforms spanning the ultraviolet to the infrared. Important examples of such waveforms are those produced by spectral control of ultrabroad bandwidth pulses, or by Fourier synthesis. These are typically tailored for specific purposes, such as to increase the photon energy and flux of high-harmonic radiation, or to control dynamical processes by steering electron dynamics on subcycle time scales. These applications demand a knowledge of the full temporal evolution of the field. Conventional pulse measurement techniques that provide estimates of the relative temporal or spectral phase are unsuited to measure such waveforms. Here we experimentally demonstrate a new, all-optical method for directly measuring the electric field of arbitrary ultrafast optical waveforms. Our method is based on high-harmonic generation (HHG) driven by a field that is the collinear superposition of the waveform to be measured with a stronger probe laser pulse. As the delay between the pulses is varied, we show that the field of the unknown waveform is mapped to energy shifts in the high-harmonic spectrum, allowing a direct, accurate, and rapid retrieval of the electric field with subcycle temporal resolution at the location of the HHG

    Time-resolved pump-probe spectroscopy with spectral domain ghost imaging

    Get PDF
    An atomic-level picture of molecular and bulk processes, such as chemical bonding and charge transfer, necessitates an understanding of the dynamical evolution of these systems. On the ultrafast timescales associated with nuclear and electronic motion, the temporal behaviour of a system is often interrogated in a 'pump-probe' scheme. Here, an initial 'pump' pulse triggers dynamics through photoexcitation, and after a carefully controlled delay a 'probe' pulse initiates projection of the instantaneous state of the evolving system onto an informative measurable quantity, such as electron binding energy. In this paper, we apply spectral ghost imaging to a pump-probe time-resolved experiment at an X-ray free-electron laser (XFEL) facility, where the observable is spectral absorption in the X-ray regime. By exploiting the correlation present in the shot-to-shot fluctuations in the incoming X-ray pulses and measured electron kinetic energies, we show that spectral ghost imaging can be applied to time-resolved pump-probe measurements. In the experiment presented, interpretation of the measurement is simplified because spectral ghost imaging separates the overlapping contributions to the photoelectron spectrum from the pump and probe pulse

    Inner Valence Hole Migration in Isopropanol

    Get PDF
    Even within the sudden approximation, the removal of one neutral Hartree-Fock orbital does not leave the molecule in a pure one-hole state of the cation; coupling to virtual orbitals leads to a breakdown in the molecular orbital picture. This can be understood as interaction with two-hole one-particle states (singly excited cations) and becomes significant when those states are energetically similar to the one-hole states. This splitting of states is most relevant for inner valence holes which lie above the double ionisation potential. As such, impulsive creation of an inner valence hole (IVH) wavepacket results in a time dependent charge density which is purely electronic in nature (charge migration) [1] , [2] , though it depends on the nuclear geometry at the time of excitation, and subsequent nuclear motion will result in decoherence [3]

    The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold

    Get PDF
    We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from 2times10122times10^{12} W/cm2^2 to 2times10142times10^{14} W/cm2^2. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr odinger equation obtained using the recently developed ab-initio time-dependent B-spline ADC method reproduce some of our observations

    Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum

    Get PDF
    We use a high harmonic generated supercontinuum in the soft X-ray region to measure X-ray absorption near edge structure (XANES) spectra in polythiophene (poly(3-hexylthiophene)) films at multiple absorption edges. A few-cycle carrier-envelope phase-stable laser pulse centered at 1800 nm was used to generate a stable soft X-ray supercontinuum, with amplitude gating limiting the generated pulse duration to a single optical half-cycle. We report a quantitative transmission measurement of the sulfur L2,3 edge over the range 160-200 eV and the carbon K edge from 280 to 330 eV. These spectra show all the features previously reported in the XANES spectra of polythiophene, but for the first time they are measured with a source that has an approximately 1 fs pulse duration. This study opens the door to measurements that can fully time-resolve the photoexcited electronic dynamics in these systems

    Synchronized pulses generated at 20 eV and 90 eV for attosecond pump-probe experiments

    No full text
    The development of attosecond pulses across different photon energies is an essential precursor to performing pump–probe attosecond experiments in complex systems, where the potential of attosecond science1 can be further developed2,3. We report the generation and characterization of synchronized extreme ultraviolet (90 eV) and vacuum ultraviolet (20 eV) pulses, generated simultaneously via high-harmonic generation. The vacuum ultraviolet pulses are well suited for pump–probe experiments that exploit the high photo-ionization cross-sections of many molecules in this spectral region4 as well as the higher photon flux due to the higher conversion efficiency of the high harmonic generation process at these energies5. We temporally characterized all pulses using the attosecond streaking technique6 and the FROG-CRAB retrieval method7. We report 576 ± 16 as pulses at 20 eV and 257 ± 21 as pulses at 90 eV. Our demonstration of synchronized attosecond pulses at different photon energies, which are inherently jitter-free due to the common-path geometry implemented, offers unprecedented possibilities for pump–probe studies

    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations

    Get PDF
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 10 3 – 10 4     Da , 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry
    • …
    corecore