67 research outputs found

    Founder populations and their uses for breast cancer genetics

    Get PDF
    Numerous founder mutations have been reported in BRCA1 and BRCA2. For genetic screening of a population with a founder mutation, testing can be targeted to the mutation, allowing for a more rapid and less expensive test. In addition, more precise estimates of the prior probability of carrying a mutation and of the likelihood of a mutation carrier developing cancer should be possible. For a given founder mutation a large number of carriers are available, so that focused scientific studies of penetrance, expression, and genetic and environmental modifiers of risk can be performed. Finally, founder populations may be a powerful resource to localize additional breast cancer susceptibility loci, because of the reduction in locus heterogeneity

    Cancer risks among BRCA1 and BRCA2 mutation carriers

    Get PDF
    BRCA1 and BRCA2 mutations increase breast and ovarian cancer risks substantially enough to warrant risk reduction surgery, despite variable risk estimates. Underlying this variability are methodological issues, and also complex genetic and nongenetic effects. Although many modifying factors are unidentified, known factors can already be incorporated in individualised risk prediction

    Log odds of carrying an Ancestral Mutation in BRCA1 or BRCA2 for a Defined personal and family history in an Ashkenazi Jewish woman (LAMBDA)

    Get PDF
    INTRODUCTION: Ancestral mutations in BRCA1 and BRCA2 are common in people of Ashkenazi Jewish descent and are associated with a substantially increased risk of breast and ovarian cancer. Women considering mutation testing usually have several personal and family cancer characteristics, so predicting mutation status from one factor alone could be misleading. The aim of this study was to develop a simple algorithm to estimate the probability that an Ashkenazi Jewish woman carries an ancestral mutation, based on multiple predictive factors. METHODS: We studied Ashkenazi Jewish women with a personal or family history of breast or ovarian cancer and living in Melbourne or Sydney, Australia, or with a previous diagnosis of breast or ovarian cancer and living in the UK. DNA samples were tested for the germline mutations 185delAG and 5382insC in BRCA1, and 6174delT in BRCA2. Logistic regression was used to identify, and to estimate the predictive strength of, major determinants. RESULTS: A mutation was detected in 64 of 424 women. An algorithm was developed by combining our findings with those from similar analyses of a large study of unaffected Jewish women in Washington. Starting with a baseline score, a multiple of 0.5 (based on the logistic regression estimates) is added for each predictive feature. The sum is the estimated log odds ratio that a woman is a carrier, and is converted to a probability by using a table. There was good internal consistency. CONCLUSIONS: This simple algorithm might be useful in the clinical and genetic counselling setting. Comparison and validation in other settings should be sought

    DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism

    Get PDF
    The cellular reaction to the DNA-damaging agents may modulate individual’s cancer susceptibility. This reaction is mainly determined by the efficacy of DNA repair, which in turn, may be influenced by the variability of DNA repair genes, expressed by their polymorphism. The hOGG1 gene encodes a glycosylase of base excision repair and RAD51 specifies a key protein in homologues recombination repair. Both proteins can be involved in the repair of DNA lesions, which are known to contribute to endometrial cancer. In the present work we determined the extent of basal DNA damage and the efficacy of removal of DNA damage induced by hydrogen peroxide and N-methyl-N′-nitro N-nitrosoguanidyne (MNNG) in peripheral blood lymphocytes of 30 endometrial cancer patients and 30 individuals without cancer. The results from DNA damage and repair study were correlated with the genotypes of two common polymorphisms of the hOGG1 and RAD51 genes: a G>C transversion at 1245 position of the hOGG1 gene producing a Ser → Cys substitution at the codon 326 (the Ser326Cys polymorphism) and a G>C substitution at 135 position of the RAD51 gene (the 135G>C polymorphism). DNA damage and repair were evaluated by alkaline single cell gel electrophoresis and genotypes were determined by restriction fragment length polymorphism PCR. We observed a strong association between endometrial cancer and the C/C genotype of the 135G>C polymorphism of the RAD51 gene. Moreover, there was a strong correlation between that genotype and endometrial cancer occurrence in subjects with a high level of basal DNA damage. We did not observe any correlation between the Ser326Cys polymorphism of the hOGG1 gene and endometrial cancer. Our result suggest that the 135G>C polymorphism of the RAD51 gene may be linked to endometrial cancer and can be considered as an additional marker of this disease

    Alzheimer’s disease: diagnostics, prognostics and the road to prevention

    Get PDF
    Alzheimer’s disease (AD) presents one of the leading healthcare challenges of the 21st century, with a projected worldwide prevalence of >107 million cases by 2025. While biomarkers have been identified, which may correlate with disease progression or subtype for the purpose of disease monitoring or differential diagnosis, a biomarker for reliable prediction of late onset disease risk has not been available until now. This deficiency in reliable predictive biomarkers, coupled with the devastating nature of the disease, places AD at a high priority for focus by predictive, preventive and personalized medicine. Recent data, discovered using phylogenetic analysis, suggest that a variable length poly-T sequence polymorphism in the TOMM40 gene, adjacent to the APOE gene, is predictive of risk of AD age-of-onset when coupled with a subject’s current age. This finding offers hope for reliable assignment of disease risk within a 5-7 year window, and is expected to guide enrichment of clinical trials in order to speed development of preventative medicines

    The Toll→NFκB Signaling Pathway Mediates the Neuropathological Effects of the Human Alzheimer's Aβ42 Polypeptide in Drosophila

    Get PDF
    Alzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Αβ42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Αβ42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Αβ42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Αβ42 polypeptide induces cell death and tissue degeneration in the compound eye. One of the genes identified in our genetic screen is Toll (Tl). It encodes the receptor for the highly conserved Tl→NFkB innate immunity/inflammatory pathway and is a fly homolog of the mammalian Interleukin-1 (Ilk-1) receptor. We found that Tl loss-of-function mutations dominantly suppress the neuropathological effects of the Αβ42 polypeptide while gain-of-function mutations that increase receptor activity dominantly enhance them. Furthermore, we present evidence demonstrating that Tl and key downstream components of the innate immunity/inflammatory pathway play a central role in mediating the neuropathological activities of Αβ42. We show that the deleterious effects of Αβ42 can be suppressed by genetic manipulations of the Tl→NFkB pathway that downregulate signal transduction. Conversely, manipulations that upregulate signal transduction exacerbate the deleterious effects of Aβ42. Since postmortem studies have shown that the Ilk-1→NFkB innate immunity pathway is substantially upregulated in the brains of AD patients, the demonstration that the Tl→NFkB signaling actively promotes the process of Αβ42 induced cell death and tissue degeneration in flies points to possible therapeutic targets and strategies

    Mammographic density, breast cancer risk and risk prediction

    Get PDF
    In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer in several populations and across age at mammogram. Recently, this risk factor has been added to existing breast cancer risk prediction models, increasing the discriminatory accuracy with its inclusion, albeit slightly. With validation, these models may replace the existing Gail model for clinical risk assessment. However, absolute risk estimates resulting from these improved models are still limited in their ability to characterize an individual's probability of developing cancer. Promising new measures of mammographic density, including volumetric density, which can be standardized using full-field digital mammography, will likely result in a stronger risk factor and improve accuracy of risk prediction models
    corecore