83 research outputs found

    Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology.</p> <p>Methods</p> <p>In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS≤8) with or without incidence of elevated intracranial pressure (ICP). De-identified samples and ELISAs were used to confirm the sensitivity and specificity of IL-6 as a prognostic marker of elevated ICP in both isolated TBI patients, and polytrauma patients with TBI.</p> <p>Results</p> <p>Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP ≥ 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained ≤20 mm Hg. When blinded samples (n = 22) were assessed, a serum IL-6 cut-off of <5 pg/ml correctly identified 100% of all the healthy volunteers, a cut-off of >128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained ≤20 mm Hg throughout the study period. In contrast, the marker had no prognostic value in predicting elevated ICP in polytrauma patients with TBI. When the levels of serum IL-6 were assessed in patients with orthopedic injury (n = 7) in the absence of TBI, a significant increase was found in these patients compared to healthy volunteers, albeit lower than that observed in TBI patients.</p> <p>Conclusions</p> <p>Our results suggest that serum IL-6 can be used for the differential diagnosis of elevated ICP in isolated TBI.</p

    Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics

    Get PDF
    Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI—Virtual Partner Interaction—a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms

    Dynamic Emotional and Neural Responses to Music Depend on Performance Expression and Listener Experience

    Get PDF
    Apart from its natural relevance to cognition, music provides a window into the intimate relationships between production, perception, experience, and emotion. Here, emotional responses and neural activity were observed as they evolved together with stimulus parameters over several minutes. Participants listened to a skilled music performance that included the natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses. A mechanical performance of the same piece served as a control. Before and after fMRI scanning, participants reported real-time emotional responses on a 2-dimensional rating scale (arousal and valence) as they listened to each performance. During fMRI scanning, participants listened without reporting emotional responses. Limbic and paralimbic brain areas responded to the expressive dynamics of human music performance, and both emotion and reward related activations during music listening were dependent upon musical training. Moreover, dynamic changes in timing predicted ratings of emotional arousal, as well as real-time changes in neural activity. BOLD signal changes correlated with expressive timing fluctuations in cortical and subcortical motor areas consistent with pulse perception, and in a network consistent with the human mirror neuron system. These findings show that expressive music performance evokes emotion and reward related neural activations, and that music's affective impact on the brains of listeners is altered by musical training. Our observations are consistent with the idea that music performance evokes an emotional response through a form of empathy that is based, at least in part, on the perception of movement and on violations of pulse-based temporal expectancies

    Metabolic changes in concussed American football players during the acute and chronic post-injury phases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations.</p> <p>Methods</p> <p>The present study investigated the effects of sports concussion on brain metabolism using <sup>1</sup>H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.</p> <p>Results</p> <p>Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase.</p> <p>Conclusions</p> <p>These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.</p

    Theology and Sexual Ethics

    No full text
    • …
    corecore