2,178 research outputs found

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information

    Volume of hyperintense inflammation (VHI): A quantitative imaging biomarker of inflammation load in spondyloarthritis, enabled by human-machine cooperation

    Get PDF
    Qualitative visual assessment of MRI scans is a key mechanism by which inflammation is assessed in clinical practice. For example, in axial spondyloarthritis (axSpA), visual assessment focuses on the identification of regions with increased signal in the bone marrow, known as bone marrow oedema (BMO), on water-sensitive images. The identification of BMO has an important role in the diagnosis, quantification and monitoring of disease in axSpA. However, BMO evaluation depends heavily on the experience and expertise of the image reader, creating substantial imprecision. Deep learning-based segmentation is a natural approach to addressing this imprecision, but purely automated solutions require large training sets that are not currently available, and deep learning solutions with limited data may not be sufficiently trustworthy for use in clinical practice. To address this, we propose a workflow for inflammation segmentation incorporating both deep learning and human input. With this ‘human-machine cooperation’ workflow, a preliminary segmentation is generated automatically by deep learning; a human reader then ‘cleans’ the segmentation by removing extraneous segmented voxels. The final cleaned segmentation defines the volume of hyperintense inflammation (VHI), which is proposed as a quantitative imaging biomarker (QIB) of inflammation load in axSpA. We implemented and evaluated the proposed human-machine workflow in a cohort of 29 patients with axSpA who had undergone prospective MRI scans before and after starting biologic therapy. The performance of the workflow was compared against purely visual assessment in terms of inter-observer/inter-method segmentation overlap, inter-observer agreement and assessment of response to biologic therapy. The human-machine workflow showed superior inter-observer segmentation overlap than purely manual segmentation (Dice score 0.84 versus 0.56). VHI measurements produced by the workflow showed similar or better inter-observer agreement than visual scoring, with similar response assessments. We conclude that the proposed human-machine workflow offers a mechanism to improve the consistency of inflammation assessment, and that VHI could be a valuable QIB of inflammation load in axSpA, as well as offering an exemplar of human-machine cooperation more broadly

    High resolution dynamical mapping of social interactions with active RFID

    Get PDF
    In this paper we present an experimental framework to gather data on face-to-face social interactions between individuals, with a high spatial and temporal resolution. We use active Radio Frequency Identification (RFID) devices that assess contacts with one another by exchanging low-power radio packets. When individuals wear the beacons as a badge, a persistent radio contact between the RFID devices can be used as a proxy for a social interaction between individuals. We present the results of a pilot study recently performed during a conference, and a subsequent preliminary data analysis, that provides an assessment of our method and highlights its versatility and applicability in many areas concerned with human dynamics

    Quantitative magnetic resonance imaging (qMRI) in Axial Spondyloarthritis

    Get PDF
    Imaging, and particularly magnetic resonance imaging (MRI), plays a crucial role in the assessment of inflammation in rheumatic disease, and forms a core component of the diagnostic pathway in axial spondyloarthritis (axSpA). However, conventional imaging techniques are limited by image contrast being non-specific to inflammation and a reliance on subjective, qualitative reader interpretation. Quantitative MRI (qMRI) methods offer scope to address these limitations and improve our ability to accurately and precisely detect and characterise inflammation, potentially facilitating a more personalised approach to management. Here, we review qMRI methods and emerging quantitative imaging biomarkers (QIBs) for imaging inflammation in axSpA. We discuss the potential benefits as well as the practical considerations that must be addressed in the movement toward clinical translation of QIBs

    Civic crowdfunding research: challenges, opportunities, and future agenda

    Get PDF
    Civic crowdfunding is a sub-type of crowdfunding through which citizens, in collaboration with government, fund projects providing a community service. Although in the early stages of development, civic crowdfunding is a promising area for both research and application due to its potential impact on citizen engagement, as well as its influence on the success of a wide range of civic projects ranging from physical structures to amenities and local services. However, the field remains under-addressed in academic research and underdeveloped in terms of the number of civic projects posted to crowdfunding platforms. Acknowledging these issues, we outline the history of civic crowdfunding and describe the current landscape, focusing on online crowdfunding platforms established specifically for the funding of civic projects (Citizinvestor, ioby, Neighbor.ly, Spacehive). The challenges and the opportunities of civic crowdfunding are examined, and its distinguishing characteristics are outlined, including a consideration of the impact of social media and platform features. We then propose a research agenda to help shape the future of this emergent field

    Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin

    Get PDF
    Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time

    Clues from nearby galaxies to a better theory of cosmic evolution

    Full text link
    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better theory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.Comment: published in Natur
    • …
    corecore