2,805 research outputs found
Whey protein does not enhance the adaptations to elbow flexor resistance training
Purpose: It is unclear whether protein supplementation augments the gains in muscle strength and size observed following resistance training (RT), as limitations to previous studies include small cohorts, imprecise measures of muscle size and strength, and no control of prior exercise or habitual protein intake (HPI). We aimed to determine whether whey protein supplementation affected RT-induced changes in elbow flexor muscle strength and size. Methods: We pair-matched 33 previously untrained, healthy young men for their HPI and strength response to 3-wk RT without nutritional supplementation (followed by 6-wk no training), and then randomly assigned them to protein (PRO; n = 17) or placebo (PLA; n = 16) groups. Participants subsequently performed elbow flexor RT 3 d/wk for 12-wk and consumed PRO or PLA immediately before and after each training session. We assessed elbow flexor muscle strength [unilateral 1-RM and isometric maximum voluntary force (MVF)] and size [total volume and maximum anatomical cross-sectional area (ACSAmax) determined with MRI] before and after the 12-wk RT. Results: PRO and PLA demonstrated similar increases in muscle volume (PRO, 17.0 ± 7.1% vs. PLA, 14.9 ± 4.6%; P = 0.32), ACSAmax (PRO, 16.2 ± 7.1% vs. PLA, 15.6 ± 4.4%; P = 0.80), 1-RM (PRO, 41.8 ± 21.2% vs. PLA, 41.4 ± 19.9%; P = 0.97) and MVF (PRO, 12.0 ± 9.9% vs. PLA, 14.5 ± 8.3%; P = 0.43). Conclusion: In the context of this study, protein supplementation did not augment elbow flexor muscle strength and size changes that occurred after 12-wk RT. Key words: Protein supplementation – strength training – muscle hypertrophy – muscle architecture – training respons
A Critical Appraisal of Guidelines for Antenatal Care: Components of Care and Priorities in Prenatal Education
There are a variety of published prenatal care (PNC) guidelines that claim a scientific basis for the information included. Four sets of PNC guidelines published between 2005 and 2009 were examined and critiqued. The recommendations for assessment procedures, laboratory testing, and education/counseling topics were analyzed within and between these guidelines. The PNC components were synthesized to provide an organized, comprehensive appendix that can guide providers of antepartum care. The appendix may be used to locate which guidelines addressed which topics to assist practitioners to identify evidence sources. The suggested timing for introducing and reinforcing specific topics is also presented in the appendix. Although education is often assumed to be a vital component of PNC, it was inconsistently included in the guidelines that were reviewed. Even when education was included, important detail was lacking. Addressing each woman\u27s needs as the first priority was suggested historically and remains relevant in current practice to systematically provide care while maintaining the woman as the central player. More attention to gaps in current research is important for the development of comprehensive prenatal guidelines that contribute effectively to the long‐term health and well‐being of women, families, and their communities
An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System
In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy
A gene to organism approach--assessing the impact of environmental pollution in eelpout (Zoarces viviparus) females and larvae
A broad biomarker approach was applied to study the effects of marine pollution along the Swedish west coast using the teleost eelpout (Zoarces viviparus) as the sentinel species. Measurements were performed on different biological levels, from the molecular to the organismal, including measurements of messenger RNA (mRNA), proteins, cellular and tissue changes, and reproductive success. Results revealed that eelpout captured in Stenungsund had significantly higher hepatic ethoxyresorufin O-deethylase activity, high levels of both cytochrome P4501A and diablo homolog mRNA, and high prevalence of dead larvae and nuclear damage in erythrocytes. Eelpout collected in Göteborg harbor displayed extensive macrovesicular steatosis, whereby the majority of hepatocytes were affected throughout the liver, which could indicate an effect on lipid metabolism. Results also indicate that eelpouts collected at polluted sites might have an affected immune system, with lower mRNA expression of genes involved in the innate immune system and a higher number of lymphocytes. Biomarker assessment also was performed on livers dissected from unborn eelpout larvae collected from the ovary of the females. No significant differences were noted, which might indicate that the larvae to some extent are protected from effects of environmental pollutants. In conclusion, usage of the selected set of biological markers, covering responses from gene to organism, has demonstrated site-specific biomarker patterns that provided a broad and comprehensive picture of the impact of environmental stressors
Decision-Making in Research Tasks with Sequential Testing
Background: In a recent controversial essay, published by JPA Ioannidis in PLoS Medicine, it has been argued that in some research fields, most of the published findings are false. Based on theoretical reasoning it can be shown that small effect sizes, error-prone tests, low priors of the tested hypotheses and biases in the evaluation and publication of research findings increase the fraction of false positives. These findings raise concerns about the reliability of research. However, they are based on a very simple scenario of scientific research, where single tests are used to evaluate independent hypotheses. Methodology/Principal Findings: In this study, we present computer simulations and experimental approaches for analyzing more realistic scenarios. In these scenarios, research tasks are solved sequentially, i.e. subsequent tests can be chosen depending on previous results. We investigate simple sequential testing and scenarios where only a selected subset of results can be published and used for future rounds of test choice. Results from computer simulations indicate that for the tasks analyzed in this study, the fraction of false among the positive findings declines over several rounds of testing if the most informative tests are performed. Our experiments show that human subjects frequently perform the most informative tests, leading to a decline of false positives as expected from the simulations. Conclusions/Significance: For the research tasks studied here, findings tend to become more reliable over time. We also find that the performance in those experimental settings where not all performed tests could be published turned out to be surprisingly inefficient. Our results may help optimize existing procedures used in the practice of scientific research and provide guidance for the development of novel forms of scholarly communication.Engineering and Applied SciencesPsycholog
Contribution of income and job strain to the association between education and cardiovascular disease in 1.6 million Danish employees
AIMS: We examined the extent to which associations between education and cardiovascular disease (CVD) morbidity and mortality are attributable to income and work stress. METHODS AND RESULTS: We included all employed Danish residents aged 30-59 years in 2000. Cardiovascular disease morbidity analyses included 1 638 270 individuals, free of cardiometabolic disease (CVD or diabetes). Mortality analyses included 41 944 individuals with cardiometabolic disease. We assessed education and income annually from population registers and work stress, defined as job strain, with a job-exposure matrix. Outcomes were ascertained until 2014 from health registers and risk was estimated using Cox regression. During 10 957 399 (men) and 10 776 516 person-years (women), we identified 51 585 and 24 075 incident CVD cases, respectively. For men with low education, risk of CVD was 1.62 [95% confidence interval (CI) 1.58-1.66] before and 1.46 (95% CI 1.42-1.50) after adjustment for income and job strain (25% reduction). In women, estimates were 1.66 (95% CI 1.61-1.72) and 1.53 (95% CI 1.47-1.58) (21% reduction). Of individuals with cardiometabolic disease, 1736 men (362 234 person-years) and 341 women (179 402 person-years) died from CVD. Education predicted CVD mortality in both sexes. Estimates were reduced with 54% (men) and 33% (women) after adjustment for income and job strain. CONCLUSION: Low education predicted incident CVD in initially healthy individuals and CVD mortality in individuals with prevalent cardiometabolic disease. In men with cardiometabolic disease, income and job strain explained half of the higher CVD mortality in the low education group. In healthy men and in women regardless of cardiometabolic disease, these factors explained 21-33% of the higher CVD morbidity and mortality
Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback
Quantum measurements not only extract information from a system but also
alter its state. Although the outcome of the measurement is probabilistic, the
backaction imparted on the measured system is accurately described by quantum
theory. Therefore, quantum measurements can be exploited for manipulating
quantum systems without the need for control fields. We demonstrate
measurement-only state manipulation on a nuclear spin qubit in diamond by
adaptive partial measurements. We implement the partial measurement via tunable
correlation with an electron ancilla qubit and subsequent ancilla readout. We
vary the measurement strength to observe controlled wavefunction collapse and
find post-selected quantum weak values. By combining a novel quantum
non-demolition readout on the ancilla with real-time adaption of the
measurement strength we realize steering of the nuclear spin to a target state
by measurements alone. Besides being of fundamental interest, adaptive
measurements can improve metrology applications and are key to
measurement-based quantum computing.Comment: 6 pages, 4 figure
An Open-System Quantum Simulator with Trapped Ions
The control of quantum systems is of fundamental scientific interest and
promises powerful applications and technologies. Impressive progress has been
achieved in isolating the systems from the environment and coherently
controlling their dynamics, as demonstrated by the creation and manipulation of
entanglement in various physical systems. However, for open quantum systems,
engineering the dynamics of many particles by a controlled coupling to an
environment remains largely unexplored. Here we report the first realization of
a toolbox for simulating an open quantum system with up to five qubits. Using a
quantum computing architecture with trapped ions, we combine multi-qubit gates
with optical pumping to implement coherent operations and dissipative
processes. We illustrate this engineering by the dissipative preparation of
entangled states, the simulation of coherent many-body spin interactions and
the quantum non-demolition measurement of multi-qubit observables. By adding
controlled dissipation to coherent operations, this work offers novel prospects
for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see
publication. Manuscript + Supplementary Informatio
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
The extraordinary evolutionary history of the reticuloendotheliosis viruses
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events
- …