25 research outputs found

    Leishmania donovani: Immunostimulatory Cellular Responses of Membrane and Soluble Protein Fractions of Splenic Amastigotes in Cured Patient and Hamsters

    Get PDF
    Visceral leishmaniasis (VL), caused by the intracellular parasite Leishmania donovani, L. chagasi and L. infantum is characterized by defective cell-mediated immunity (CMI) and is usually fatal if not treated properly. An estimated 350 million people worldwide are at risk of acquiring infection with Leishmania parasites with approximately 500,000 cases of VL being reported each year. In the absence of an efficient and cost-effective antileishmanial drug, development of an appropriate long-lasting vaccine against VL is the need of the day. In VL, the development of a CMI, capable of mounting Th1-type of immune responses, play an important role as it correlate with recovery from and resistance to disease. Resolution of infection results in lifelong immunity against the disease which indicates towards the feasibility of a vaccine against the disease. Most of the vaccination studies in Leishmaniasis have been focused on promastigote- an infective stage of parasite with less exploration of pathogenic amastigote form, due to the cumbersome process of its purified isolation. In the present study, we have isolated and purified splenic amastigotes of L. donovani, following the traditional protocol with slight modification. These were fractionated into five membranous and soluble subfractions each i.e MAF1-5 and SAF1-5 and were subjected for evaluation of their ability to induce cellular responses. Out of five sub-fractions from each of membrane and soluble, only four viz. MAF2, MAF3, SAF2 and SAF3 were observed to stimulate remarkable lymphoproliferative, IFN-Îł, IL-12 responses and Nitric Oxide production, in Leishmania-infected cured/exposed patients and hamsters. Results suggest the presence of Th-1 type immunostimulatory molecules in these sub-fractions which may further be exploited for developing a successful subunit vaccine from the less explored pathogenic stage against VL

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function

    Full text link
    corecore