59 research outputs found
A dusty pinwheel nebula around the massive star WR 104
Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate
precursors to the supernova terminating their brief lives. The existence of
dust shells around such stars has been enigmatic since their discovery some 30
years ago; the intense radiation field from the star should be inimical to dust
survival. Although dust-creation models, including those involving interacting
stellar winds from a companion star, have been put forward, high-resolution
observations are required to understand this phenomena. Here we present
resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with
novel imaging techniques, revealing detail on scales corresponding to about 40
AU at the star. Our maps show that the dust forms a spatially confined stream
following precisely a linear (or Archimedian) spiral trajectory. Images taken
at two separate epochs show a clear rotation with a period of 220 +/- 30 days.
Taken together, these findings prove that a binary star is responsible for the
creation of the circumstellar dust, while the spiral plume makes WR 104 the
prototype of a new class of circumstellar nebulae unique to interacting wind
systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Toward Understanding Massive Star Formation
Although fundamental for astrophysics, the processes that produce massive
stars are not well understood. Large distances, high extinction, and short
timescales of critical evolutionary phases make observations of these processes
challenging. Lacking good observational guidance, theoretical models have
remained controversial. This review offers a basic description of the collapse
of a massive molecular core and a critical discussion of the three competing
concepts of massive star formation:
- monolithic collapse in isolated cores
- competitive accretion in a protocluster environment
- stellar collisions and mergers in very dense systems
We also review the observed outflows, multiplicity, and clustering properties
of massive stars, the upper initial mass function and the upper mass limit. We
conclude that high-mass star formation is not merely a scaled-up version of
low-mass star formation with higher accretion rates, but partly a mechanism of
its own, primarily owing to the role of stellar mass and radiation pressure in
controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar
Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities
Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification.
Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc.
Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese
Foundation for Science and Technology (FCT) through the project EPIDisc
(UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International
Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program.
The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/
2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are
also greatly acknowledged.info:eu-repo/semantics/publishedVersio
SWS observations of IR emission features towards compact HII regions
We present ISO Short Wavelength Spectrometer (SWS) grating spectra of six compact HII regions. In addition to strong emission lines from atomic species these spectra display infrared bands attributed to Polycyclic Aromatic Hydrocarbons (PAHs). The continuous spectral coverage of the present observations and the high spectral resolution allow to describe the detailed structure of the emission bands: the 7.7μm band is composed of two bands at 7.6 and 7.8μm, the 6.2 μm band has a long wavelength extension, there is a plateau of emission between 6 and 7μm and a new feature is reported at 11.0μm in addition to the well-known 11.2μm band. These observations also reveal large variations in the relative intensities of the dust bands, in particular between the 7.7 and 8.6μm bands. In one extreme case, the 8.6μm band is stronger than the 7.7μm band. These observations are compared to a mixed population of ionized PAHs, using new laboratory measurements
Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86
BACKGROUND: The RET tyrosine kinase receptor has emerged as a target in thyroid and endocrine resistant breast cancer. We previously reported the synthesis of kinase inhibitors with potent activity against RET. Herein, we have further investigated the effect of the lead compound SPP86 on RET mediated signaling and proliferation. Based on these observations, we hypothesized that SPP86 may be useful for studying the cellular activity of RET. METHODS: We compared the effects of SPP86 on RET-induced signaling and proliferation in thyroid cancer cell lines expressing RET-PTC1 (TPC1), or the activating mutations BRAF(V600E) (8505C) and RAS(G13R) (C643). The effect of SPP86 on RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK pathway signaling and cell proliferation in MCF7 breast cancer cells was also investigated. RESULTS: SPP86 inhibited MAPK signaling and proliferation in RET/PTC1 expressing TPC1 but not 8505C or C643 cells. In TPC1 cells, the inhibition of RET phosphorylation required co-exposure to SPP86 and the focal adhesion kinase (FAK) inhibitor PF573228. In MCF7 cells, SPP86 inhibited RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK signaling and estrogen receptorα (ERα) phosphorylation, and inhibited proliferation to a similar degree as tamoxifen. Interestingly, SPP86 and PF573228 inhibited RET/PTC1 and GDNF- RET induced activation of Akt and MAPK signaling to a similar degree. CONCLUSION: SPP86 selectively inhibits RET downstream signaling in RET/PTC1 but not BRAF(V600E) or RAS(G13R) expressing cells, indicating that downstream kinases were not affected. SPP86 also inhibited RET signaling in MCF7 breast cancer cells. Additionally, RET- FAK crosstalk may play a key role in facilitating PTC1/RET and GDNF- RET induced activation of Akt and MAPK signaling in TPC1 and MCF7 cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2407-14-853) contains supplementary material, which is available to authorized users
The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus
We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated “PPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes
Highly symmetric POVMs and their informational power
We discuss the dependence of the Shannon entropy of normalized finite rank-1
POVMs on the choice of the input state, looking for the states that minimize
this quantity. To distinguish the class of measurements where the problem can
be solved analytically, we introduce the notion of highly symmetric POVMs and
classify them in dimension two (for qubits). In this case we prove that the
entropy is minimal, and hence the relative entropy (informational power) is
maximal, if and only if the input state is orthogonal to one of the states
constituting a POVM. The method used in the proof, employing the Michel theory
of critical points for group action, the Hermite interpolation and the
structure of invariant polynomials for unitary-antiunitary groups, can also be
applied in higher dimensions and for other entropy-like functions. The links
between entropy minimization and entropic uncertainty relations, the Wehrl
entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure
Spectropolarimetry of stars across the H-R diagram
The growing sample of magnetic stars shows a remarkable diversity in the
properties of their magnetic fields. The overall goal of current studies is to
understand the origin, evolution, and structure of stellar magnetic fields in
stars of different mass at different evolutionary stages. In this chapter we
discuss recent measurements together with the underlying assumptions in the
interpretation of data and the requirements, both observational and
theoretical, for obtaining a realistic overview of the role of magnetic fields
in various types of stars.Comment: 23 pages, 3 figures, chapter 7 of "Astronomical Polarisation from the
Infrared to Gamma Rays", published in Astrophysics and Space Science Library
46
Mass loss from hot massive stars
Mass loss is a key process in the evolution of massive stars, and must be
understood quantitatively to be successfully included in broader astrophysical
applications. In this review, we discuss various aspects of radiation driven
mass loss, both from the theoretical and the observational side. We focus on
winds from OB-stars, with some excursions to the Luminous Blue Variables, Wolf-
Rayet stars, A-supergiants and Central Stars of Planetary Nebulae. After reca-
pitulating the 1-D, stationary standard model of line-driven wind, extensions
accounting for rotation and magnetic fields are discussed. The relevance of the
so-called bi-stability jump is outlined. We summarize diagnostical methods to
infer wind properties from observations, and compare the results with theore-
tical predictions, featuring the massloss-metallicity dependence. Subsequently,
we concentrate on two urgent problems which challenge our present understanding
of radiation driven winds: weak winds and wind- clumping. We discuss problems
of measuring mass-loss rates from weak winds and the potential of NIR-
spectroscopy. Wind-clumping has severe implications for the interpretation of
observational diagnostics, as derived mass-loss rates can be overestimated by
factors of 2 to 10 if clumping is ignored, and we describe ongoing attempts to
allow for more uniform results. We point out that independent arguments from
stellar evolution favor a moderate reduction of present- day mass-loss rates.
We also consider larger scale wind structure, interpreted in terms of
co-rotating interacting regions, and complete this review with a discussion of
recent progress on the X-ray line emission from massive stars, highlighting as
to how far the analysis of such X-ray line emission can give further clues
regarding an adequate description of wind clumping. (Abridged abstract)Comment: Astronomy and Astrophysics Review (accepted
- …
