22 research outputs found

    Holocentric Chromosomes of Luzula elegans Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region

    Get PDF
    The structure of holocentric chromosomes was analyzed in mitotic cells of Luzula elegans. Light and scanning electron microscopy observations provided evidence for the existence of a longitudinal groove along each sister chromatid. The centromere-specific histone H3 variant, CENH3, colocalized with this groove and with microtubule attachment sites. The terminal chromosomal regions were CENH3-negative. During metaphase to anaphase transition, L. elegans chromosomes typically curved to a sickle-like shape, a process that is likely to be influenced by the pulling forces of microtubules along the holocentric axis towards the corresponding microtubule organizing regions. A single pair of 45S rDNA sites, situated distal to Arabidopsis-telomere repeats, was observed at the terminal region of one chromosome pair. We suggest that the 45S rDNA position in distal centromere-free regions could be required to ensure chromosome stability. Copyright (C) 2011 S. Karger AG, Base

    4 Rhizaria: Phytomyxea

    No full text

    Detection of Polymyxa graminis in a barley crop in Australia

    No full text
    Polymyxa graminis was detected in the roots of barley plants from a field near Wondai, Queensland, in 2009. P. graminis was identified by characteristic sporosori in roots stained with trypan blue. The presence of P. graminis f. sp. tepida (which is hosted by wheat and oats as well as barley) in the roots was confirmed by specific PCR tests based on nuclear ribosomal DNA. P. graminis is the vector of several damaging soil-borne virus diseases of cereals in the genera Furovirus, Bymovirus and Pecluvirus. No virus particles were detected in sap extracts from leaves of stunted barley plants with leaf chlorosis and increased tillering. Further work is required to determine the distribution of P. graminis in Australian grain crops and the potential for establishment and spread of the exotic soil-borne viruses that it vectors
    corecore