118,061 research outputs found

    Acceleration Rates and Injection Efficiencies in Oblique Shocks

    Get PDF
    The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \teq{\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \teq{\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.Comment: 24 pages including 6 encapsulated figures, as a compressed, uuencoded, Postscript file. Accepted for publication in the Astrophysical Journa

    Table-lookup algorithm for pattern recognition: ELLTAB (Elliptical Table)

    Get PDF
    Remotely sensed unit is assigned to category by merely looking up its channel readings in four-dimensional table. Approach makes it possible to process multispectral scanner data using a minicomputer

    A Study for a Tracking Trigger at First Level for CMS at SLHC

    Full text link
    It is expected that the LHC accelerator and experiments will undergo a luminosity upgrade which will commence after several years of running. This part of the LHC operations is referred to as Super-LHC (SLHC) and is expected to provide beams of an order of magnitude larger luminosity (1035cm-2sec-1) than the current design. Preliminary results are presented from a feasibility study for a First Level Tracking Trigger for CMS at the SLHC using the data of the inner tracking detector. As a model for these studies the current CMS pixel detector with the same pixel size and radial distances from the beam has been used. Monte Carlo studies have been performed using the full CMS simulation package (OSCAR) and the occupancy of such a detector at SLHC beam conditions has been calculated. The design of an electron trigger which uses both the calorimeter energy depositions and the pixel data to identify isolated electrons and photons has been investigated. Results on the tracker occupancy and the electron trigger performance are presentedComment: Presented at LECC, Heidelberg 200

    Biodetection grinder

    Get PDF
    Work on a biodetection grinder is summarized. It includes development of the prototype grinder, second generation grinder, and the production version of the grinder. Tests showed the particle size distribution was satisfactory and biological evaluation confirmed the tests
    corecore