4,613 research outputs found
Restorative Justice-Informed Moral Acquaintance: Resolving the Dual Role Problem in Correctional and Forensic Practice
The issue of dual roles within forensic and correctional fields has typically been conceptualized as dissonance—experienced by practitioners— when attempting to adhere to the conflicting ethical requirements associated with client well-being and community protection. In this paper, we argue that the dual role problem should be conceptualized more broadly; to incorporate the relationship between the offender and their victim. We also propose that Restorative Justice (RJ) is able to provide a preliminary ethical framework to deal with this common ethical oversight. Furthermore, we unite the RJ framework with that of Ward’s (2013) moral acquaintance model to provide a more powerful approach—RJ informed moral acquaintance—aimed at addressing the ethical challenges faced by practitioners within forensic and correctional roles
Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets
Planetary embryos form protoplanets via mutual collisions, which can lead to
the development of magma oceans. During their solidification, large amounts of
the mantles' volatile contents may be outgassed. The resulting HO/CO
dominated steam atmospheres may be lost efficiently via hydrodynamic escape due
to the low gravity and the high stellar EUV luminosities. Protoplanets forming
later from such degassed building blocks could therefore be drier than
previously expected. We model the outgassing and subsequent hydrodynamic escape
of steam atmospheres from such embryos. The efficient outflow of H drags along
heavier species (O, CO, noble gases). The full range of possible EUV
evolution tracks of a solar-mass star is taken into account to investigate the
escape from Mars-sized embryos at different orbital distances. The envelopes
are typically lost within a few to a few tens of Myr. Furthermore, we study the
influence on protoplanetary evolution, exemplified by Venus. We investigate
different early evolution scenarios and constrain realistic cases by comparing
modeled noble gas isotope ratios with observations. Starting from solar values,
consistent isotope ratios (Ne, Ar) can be found for different solar EUV
histories, as well as assumptions about the initial atmosphere (either pure
steam or a mixture with accreted H). Our results generally favor an early
accretion scenario with a small amount of accreted H and a low-activity Sun,
because in other cases too much CO is lost during evolution, which is
inconsistent with Venus' present atmosphere. Important issues are likely the
time at which the initial steam atmosphere is outgassed and/or the amount of
CO which may still be delivered at later evolutionary stages. A late
accretion scenario can only reproduce present isotope ratios for a highly
active young Sun, but then very massive steam atmospheres would be required.Comment: 61 pages, 7 figures, 3 tables, accepted to Icaru
Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"
We study the interactions between stellar wind and the extended
hydrogen-dominated upper atmospheres of planets and the resulting escape of
planetary pick-up ions from the 5 "super-Earths" in the compact Kepler-11
system and compare the escape rates with the efficiency of the thermal escape
of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to
the solar wind, we use a polytropic 1D hydrodynamic wind model to estimate the
wind properties at the planetary orbits. We apply a Direct Simulation Monte
Carlo Model to model the hydrogen coronae and the stellar wind plasma
interaction around Kepler-11b-f within a realistic expected heating efficiency
range of 15-40%. The same model is used to estimate the ion pick-up escape from
the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f.
From the interaction model we study the influence of possible magnetic moments,
calculate the charge exchange and photoionization production rates of planetary
ions and estimate the loss rates of pick-up H+ ions for all five planets. We
compare the results between the five "super-Earths" and in a more general sense
also with the thermal escape rates of the neutral planetary hydrogen atoms. Our
results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen
corona is formed around the planet. The non-symmetric form of the corona
changes from planet to planet and is defined mostly by radiation pressure and
gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen
atoms for Kepler-11 "super-Earths" vary between approximately 6.4e30 1/s and
4.1e31 1/s depending on the planet's orbital location and assumed heating
efficiency. These values correspond to non-thermal mass loss rates of
approximately 1.07e7 g/s and 6.8e7 g/s respectively, which is a few percent of
the thermal escape rates.Comment: 8 pages, 3 figures, accepted to A&
A Critique of Current Magnetic-Accretion Models for Classical T-Tauri Stars
Current magnetic-accretion models for classical T-Tauri stars rely on a
strong, dipolar magnetic field of stellar origin to funnel the disk material
onto the star, and assume a steady-state. In this paper, I critically examine
the physical basis of these models in light of the observational evidence and
our knowledge of magnetic fields in low-mass stars, and find it lacking.
I also argue that magnetic accretion onto these stars is inherently a
time-dependent problem, and that a steady-state is not warranted.
Finally, directions for future work towards fully-consistent models are
pointed out.Comment: 2 figure
A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c
There is growing observational and theoretical evidence suggesting that
atmospheric escape is a key driver of planetary evolution. Commonly, planetary
evolution models employ simple analytic formulae (e.g., energy limited escape)
that are often inaccurate, and more detailed physical models of atmospheric
loss usually only give snapshots of an atmosphere's structure and are difficult
to use for evolutionary studies. To overcome this problem, we upgrade and
employ an already existing upper atmosphere hydrodynamic code to produce a
large grid of about 7000 models covering planets with masses 1 - 39 Earth mass
with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled
planets have equilibrium temperatures ranging between 300 and 2000 K. For each
considered stellar mass, we account for three different values of the
high-energy stellar flux (i.e., low, moderate, and high activity). For each
computed model, we derive the atmospheric temperature, number density, bulk
velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the
considered species as a function of distance from the planetary center. From
these quantities, we estimate the positions of the maximum dissociation and
ionisation, the mass-loss rate, and the effective radius of the XUV absorption.
We show that our results are in good agreement with previously published
studies employing similar codes. We further present an interpolation routine
capable to extract the modelling output parameters for any planet lying within
the grid boundaries. We use the grid to identify the connection between the
system parameters and the resulting atmospheric properties. We finally apply
the grid and the interpolation routine to estimate atmospheric evolutionary
tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure
- …