604 research outputs found

    Single Event Effects in the Pixel readout chip for BTeV

    Get PDF
    In future experiments the readout electronics for pixel detectors is required to be resistant to a very high radiation level. In this paper we report on irradiation tests performed on several preFPIX2 prototype pixel readout chips for the BTeV experiment exposed to a 200 MeV proton beam. The prototype chips have been implemented in commercial 0.25 um CMOS processes following radiation tolerant design rules. The results show that this ASIC design tolerates a large total radiation dose, and that radiation induced Single Event Effects occur at a manageable level.Comment: 15 pages, 6 Postscript figure

    Tensionless structure of glassy phase

    Full text link
    We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the glassy phase obtained under slow cooling is dominated by large scale excitations whose energy ElE_l scales with their size ll as EllΘE_l\sim l^{\Theta} with Θ1.33(5)\Theta\sim 1.33(5). Simulations suggest that in another model of this class, namely the four-spin model, energy is concentrated mainly in linear defects making also in this case domain walls tensionless. Two-dimensinal variants of these models are trivial and energy of excitations scales with the exponent Θ=1.05(5)\Theta=1.05(5).Comment: 5 page

    Spectroscopic and photometric analysis of HS 1136+6646: A hot young DAO+K7V post-common- envelope, pre-cataclysmic variable binary

    Get PDF
    Copyright © 2004 IOP Publishing / American Astronomical SocietyExtensive photometric and spectroscopic observations have been obtained for HS 1136+6646. The observations reveal a newly formed post–common-envelope binary system containing a hot ~DAO.5 primary and a highly irradiated secondary. HS 1136+6646 is the most extreme example yet of a class of short-period hot H-rich white dwarfs with K–M companion systems such as V471 Tau and Feige 24. HS 1136+6646 is a double-line spectroscopic binary showing emission lines of H I, He II, C II, Ca II, and Mg II, due in part to irradiation of the K7 V secondary by the hot white dwarf. Echelle spectra reveal the hydrogen emission lines to be double-peaked with widths of ~200 km s-1, raising the possibility that emission from an optically thin disk may also contribute. The emission lines are observed to disappear near the inferior conjunction. An orbital period of 0.83607 ± 0.00003 days has been determined through the phasing of radial velocities, emission-line equivalent widths, and photometric measurements spanning a range of 24 months. Radial velocity measurements yield an amplitude of KWD = 69 ± 2 km s-1 for the white dwarf and KK7V = 115 ± 1 km s-1 for the secondary star. In addition to orbital variations, photometric measurements have also revealed a low-amplitude modulation with a period of 113.13 minutes and a semiamplitude of 0.0093 mag. These short-period modulations are possibly associated with the rotation of the white dwarf. From fits of the Balmer line profiles, the white dwarf is estimated to have an effective temperature and gravity of ~70,000 K and log g ~ 7.75, respectively. However, this optically derived temperature is difficult to reconcile with the far-UV spectrum of the Lyman line region. Far Ultraviolet Spectroscopic Explorer spectra show the presence of O VI absorption lines and a spectral energy distribution whose slope persists nearly to the Lyman limit. The extremely high temperature of the white dwarf, from both optical and UV measurements, indicates that the binary system is one of the earliest post–common-envelope objects known, having an age around 7.7 × 105 yr. Although the spectrum of the secondary star is best represented by a K7 V star, indications are that the star may be overly luminous for its mass.NASAParticle and Astronomy Research Council, UKNS

    Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar

    Full text link
    The 2-- to 1--dimensional crossover of the localisation length of electrons confined to a disordered quantum wire of finite width LyL_y is studied in a model of electrons moving in the potential of uncorrelated impurities. An analytical formula for the localisation length is derived, describing the dimensional crossover as function of width LyL_y, conductance gg and perpendicular magnetic field BB . On the basis of these results, the scaling analysis of the quantum Hall effect in high Landau levels, and the delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure

    Slow dynamics in the 3--D gonihedric model

    Full text link
    We study dynamical aspects of three--dimensional gonihedric spins by using Monte--Carlo methods. The interest of this family of models (parametrized by one self-avoidance parameter κ\kappa) lies in their capability to show remarkably slow dynamics and seemingly glassy behaviour below a certain temperature TgT_g without the need of introducing disorder of any kind. We consider first a hamiltonian that takes into account only a four--spin term (κ=0\kappa=0), where a first order phase transition is well established. By studying the relaxation properties at low temperatures we confirm that the model exhibits two distinct regimes. For Tg<T<TcT_g< T < T_c, with long lived metastability and a supercooled phase, the approach to equilibrium is well described by a stretched exponential. For T<TgT<T_g the dynamics appears to be logarithmic. We provide an accurate determination of TgT_g. We also determine the evolution of particularly long lived configurations. Next, we consider the case κ=1\kappa=1, where the plaquette term is absent and the gonihedric action consists in a ferromagnetic Ising with fine-tuned next-to-nearest neighbour interactions. This model exhibits a second order phase transition. The consideration of the relaxation time for configurations in the cold phase reveals the presence of slow dynamics and glassy behaviour for any T<TcT< T_c. Type II aging features are exhibited by this model.Comment: 13 pages, 12 figure

    Crystallization of a supercooled liquid and of a glass - Ising model approach

    Full text link
    Using Monte Carlo simulations we study crystallization in the three-dimensional Ising model with four-spin interaction. We monitor the morphology of crystals which grow after placing crystallization seeds in a supercooled liquid. Defects in such crystals constitute an intricate and very stable network which separate various domains by tensionless domain walls. We also show that the crystallization which occurs during the continuous heating of the glassy phase takes place at a heating-rate dependent temperature.Comment: 7 page

    An ARPES view on the high-Tc problem: phonons vs spin-fluctuations

    Full text link
    We review the search for a mediator of high-Tc superconductivity focusing on ARPES experiment. In case of HTSC cuprates, we summarize and discuss a consistent view of electronic interactions that provides natural explanation of both the origin of the pseudogap state and the mechanism for high temperature superconductivity. Within this scenario, the spin-fluctuations play a decisive role in formation of the fermionic excitation spectrum in the normal state and are sufficient to explain the high transition temperatures to the superconducting state while the pseudogap phenomenon is a consequence of a Peierls-type intrinsic instability of electronic system to formation of an incommensurate density wave. On the other hand, a similar analysis being applied to the iron pnictides reveals especially strong electron-phonon coupling that suggests important role of phonons for high-Tc superconductivity in pnictides.Comment: A summary of the ARPES part of the Research Unit FOR538, http://for538.wmi.badw.d

    Isotope Effect for the Penetration Depth in Superconductors

    Full text link
    We show that various factors can lead to an isotopic dependence of the penetration depth δ\delta. Non-adiabaticity (Jahn-Teller crossing) leads to the isotope effect of the charge carrier concentration nn and, consequently, of δ\delta in doped superconductors such as the cuprates. A general equation relating the isotope coefficients of TcT_c and of δ\delta is presented for London superconductors. We further show that the presence of magnetic impurities or a proximity contact also lead to an isotopic dependence of δ\delta; the isotope coefficient turns out to be temperature dependent, β(T)\beta(T), in these cases. The existence of the isotope effect for the penetration depth is predicted for conventional as well as for high-temperature superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
    corecore