20,478 research outputs found

    Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Get PDF
    Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux <i>F</i> (particles m<sup>&minus;2</sup> s<sup>&minus;1</sup>), in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (<I>TA</I>) database, which is based on traffic intensity measurements. <P style='line-height: 20px;'> The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space) of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. <P style='line-height: 20px;'> The emission factor for the fleet mix in the measurement area <I>EF</I><sub><i>fm</i></sub>=1.4&plusmn;0.1&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a <I>F</I><sub>0</sub>=15&plusmn;18&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The urban aerosol source flux can then be written as <I>F=EF</I><sub><i>fm</i></sub><I>TA+F</I><sub>0</sub>. In a second attempt to find a parameterisation, the friction velocity <i>U</i><sub>*</sub> normalised with the average friction velocity <!-- MATH overlineUastoverline{U_ast} --> <IMG WIDTH='21' HEIGHT='36' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img15.gif' ALT='overlineUastoverline{U_ast}'> has been included, <I>F=EF</I><!-- MATH fmTAleft(fracUastoverlineUastight)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}} ight)^{0.4}{+}F_{0} --> <IMG WIDTH='136' HEIGHT='51' ALIGN='MIDDLE' BORDER='0' src='http://www.atmos-chem-phys.net/6/769/2006/acp-6-769-img16.gif' ALT='fmTAleft(fracUastoverlineUastright)0.4+F0_{fm }TAleft({frac{U_ast }{overline{U_ast}}}right)^{0.4}{+}F_{0}'>. This parameterisation results in a somewhat reduced emission factor, 1.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>. When multiple linear regression have been used, two emission factors are found, one for light duty vehicles <I>EF</I><sub>LDV</sub>=0.3&plusmn;0.3&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup> and one for heavy-duty vehicles, <I>EF</I><sub>HDV</sub>=19.8&plusmn;4.0&times;10<sup>14</sup> veh<sup>&minus;1</sup> km<sup>&minus;1</sup>, and <i>F</I><sub>0</sub>=19&plusmn;16&times;10<sup>6</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The results show that during weekdays ~70&ndash;80% of the emissions came from HDV

    Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach

    Full text link
    The relativistic optical model potential (OMP) for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-B One-Boson- Exchange potential for the bare nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent nucleon self-energies in nuclear medium are derived from the DBHF approach based on the projection techniques within the subtracted T -matrix representation. The Dirac potentials as well as the corresponding Schrodinger equivalent potentials are evaluated. An improved local density approximation is employed in this analysis, where a range parameter is included to account for a finite-range correction of the nucleon-nucleon interaction. As an example the total cross sections, differential elastic scattering cross sections, analyzing powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated. The results derived from this microscopic approach of the OMP are compared to the experimental data, as well as the results obtained with a phenomenological OMP. A good agreement between the theoretical results and the measurements can be achieved for all incident energies using a constant value for the range parameter.Comment: 10 pages, 16 figure

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    ENVIRONMENTAL COMPLIANCE IN U.S. AGRICULTURAL POLICY: PAST PERFORMANCE AND FUTURE POTENTIAL

    Get PDF
    Since 1985, U.S. agricultural producers have been required to practice soil conservation on highly erodible cropland and conserve wetlands as a condition of farm program eligibility. This report discusses the general characteristics of compliance incentives, evaluates their effectiveness in reducing erosion in the program's current form, and explores the potential for expanding the compliance approach to address nutrient runoff from crop production. While soil erosion has, in fact, been reduced on land subject to Conservation Compliance, erosion is also down on land not subject to Conservation Compliance, indicating the influence of other factors. Analysis to isolate the influence of Conservation Compliance incentives from other factors suggests that about 25 percent of the decline in soil erosion between 1982 and 1997 can be attributed to Conservation Compliance. This report also finds that compliance incentives have likely deterred conversion of noncropped highly erodible land and wetland to cropland, and that a compliance approach could be used effectively to address nutrient runoff from crop production.conservation compliance, Sodbuster, Swampbuster, conservation policy, agri-environmental policy, nutrient management, buffer practices, Agricultural and Food Policy,

    Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    No full text
    International audienceUrban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m-2 s-1), in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA) database, which is based on traffic intensity measurement. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space) of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh-1 km-1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=14±18×106 m-2 s-1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF. This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh-1 km-1. When multiple linear regression have been used, two emission factors are found, one for light duty vehicles EFLDV=0.3±0.3×1014 veh-1 km-1 and one for heavy-duty vehicles, EFHDV=19.8±4.0×1014 veh-1 km-1, and F0=18±16×106 m-2 s-1. The results show that during weekdays ~70?80% of the emissions came from HDV

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Vicious Walkers and Hook Young Tableaux

    Full text link
    We consider a generalization of the vicious walker model. Using a bijection map between the path configuration of the non-intersecting random walkers and the hook Young diagram, we compute the probability concerning the number of walker's movements. Applying the saddle point method, we reveal that the scaling limit gives the Tracy--Widom distribution, which is same with the limit distribution of the largest eigenvalues of the Gaussian unitary ensemble.Comment: 23 pages, 5 figure

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Contribution of residential wood combustion to hourly winter aerosol in Northern Sweden determined by positive matrix factorization

    No full text
    International audienceThe combined effect of residential wood combustion (RWC) emissions with stable atmospheric conditions, which is a frequent occurrence in Northern Sweden during wintertime, can deteriorate the air quality even in small towns. To estimate the contribution of RWC to the total atmospheric aerosol loading, the positive matrix factorization (PMF) method was applied to hourly mean particle number size distributions measured in a residential area in Lycksele during winter 2005/2006. The sources were identified based on the particle number size distribution profiles of the PMF factors, the diurnal contributions patterns estimated by PMF for both weekends and weekdays, and correlation of the modeled particle number concentration per factor with measured aerosol mass concentrations (PM10, PM1, and light-absorbing carbon MLAC). Through these analyses, the factors were identified as local traffic (factor 1), local RWC (factor 2), and local RWC plus long-range transport (LRT) of aerosols (factor 3). In some occasions, it was difficult to detach the contributions of local RWC from background concentrations since their particle number size distributions partially overlapped and the model was not able to separate these two sources. As a consequence, we report the contribution of RWC as a range of values, being the minimum determined by factor 2 and the possible maximum as the contributions of both factors 2 and 3. A multiple linear regression (MLR) of observed PM10, PM1, total particle number, and MLAC concentrations is carried out to determine the source contribution to these aerosol variables. The results reveal RWC is an important source of atmospheric particles in the size range 25?606 nm (44?57%), PM10 (36?82%), PM1 (31?83%), and MLAC (40?76%) mass concentrations in the winter season. The contribution from RWC is especially large on weekends between 18:00 LT and midnight whereas local traffic emissions show similar contributions every day

    Atomic Processes in Planetary Nebulae and H II Regions

    Full text link
    Spectroscopic studies of Planetary Nebulae (PNe) and H {\sc ii} regions have driven much development in atomic physics. In the last few years the combination of a generation of powerful observatories, the development of ever more sophisticated spectral modeling codes, and large efforts on mass production of high quality atomic data have led to important progress in our understanding of the atomic spectra of such astronomical objects. In this paper I review such progress, including evaluations of atomic data by comparisons with nebular spectra, detection of spectral lines from most iron-peak elements and n-capture elements, observations of hyperfine emission lines and analysis of isotopic abundances, fluorescent processes, and new techniques for diagnosing physical conditions based on recombination spectra. The review is directed toward atomic physicists and spectroscopists trying to establish the current status of the atomic data and models and to know the main standing issues.Comment: 9 pages, 1 figur
    • …
    corecore