28,723 research outputs found
Self Interference of Single Electrodynamic Particle in Double Slit
It is by the long established fact in experiment and theory that
electromagnetic waves, here as one component of an IED particle, passing a
double slit will undergo self inference each, producing at a detector plane
fringed intensities. The wave generating point charge of a zero rest mass, as
the other component of the particle, is maintained a constant energy and speed
by a repeated radiation reabsorption/reemission scheme, and in turn steered in
direction in its linear motion by the reflected radiation field, and will
thereby travel to the detector along (one of) the optical path(s) of the waves
leading to a bright interference fringe. We elucidate the process formally
based on first principles solutions for the IED particle and known principles
for wave-matter interaction.Comment: Presentation at The 6th Int. Symp. Quantum Theory and Symmetries,
Univ. Kent, 2009
Drivers and food web effects of Gonyostomum semen blooms
The flagellate Gonyostomum semen forms dense late-summer blooms in humic lakes and is a nuisance to swimmers because it forms a slimy coat on the skin, causing irritation in sensitive individuals. Increasing occurrence and bloom incidence of G. semen has been reported during recent decades, but it is not clear which factors affect the distribution and bloom formation of this alga. Large cell size, ejection of long, slimy threads (trichocysts), and nighttime migration to the hypolimnion may limit grazing on G. semen by herbivorous zooplankton, resulting in a decreased coupling between phytoplankton and higher trophic levels during blooms. The studies included in this thesis investigate which factors affect G. semen occurrence and bloom formation and how G. semen blooms affect the community composition and trophic interactions in boreal, humic lakes.
The occurrence of G. semen has increased between 1995 and 2010, especially in southern Sweden. Bloom incidence and total biomass did not increase continually, but fluctuated among years and peaked in the middle of the study period. Temperature and length of the growing season affected the occurrence and, to a lesser extent, bloom formation of G. semen, but local factors such as pH and water colour were more important for bloom formation. More lakes may become suitable habitats with the ongoing increase in water colour and increasing temperatures may result in a more frequent occurrence and bloom formation of G. semen.
Blooms resulted in a shift in zooplankton assemblages toward predominance by small cladocerans, which were not able to feed on G. semen but instead fed more on heterotrophic food resources, supporting the hypothesis of a reduced coupling between phytoplankton and zooplankton. Zooplankton assemblages predominated by small animals feeding on low-quality resources may reduce the food quality for planktivorous fish. Instead, the invertebrate predator C. flavicans appeared to benefit from G. semen blooms, as indicated by its high abundance in bloom-lakes. Calanoid copepods and a large cladoceran fed efficiently on G. semen in the laboratory, indicating that there is, however, some trophic coupling between G. semen and higher trophic levels. This supports the use of biomanipulation of fish communities for controlling G. semen blooms
Dispersive Charge and Flux Qubit Readout as a Quantum Measurement Process
We analyze the dispersive readout of superconducting charge and flux qubits
as a quantum measurement process. The measurement oscillator frequency is
considered much lower than the qubit frequency. This regime is interesting
because large detuning allows for strong coupling between the measurement
oscillator and the signal transmission line, thus allowing for fast readout.
Due to the large detuning we may not use the rotating wave approximation in the
oscillator-qubit coupling. Instead we start from an approximation where the
qubit follows the oscillator adiabatically, and show that non-adiabatic
corrections are small. We find analytic expressions for the measurement time,
as well as for the back-action, both while measuring and in the off-state. The
quantum efficiency is found to be unity within our approximation, both for
charge and flux qubit readout.Comment: 26 pages, 3 figures, To be published in Journal of Low Temperature
Physic
New Fe II energy levels from stellar spectra
The spectra of B-type and early A-type stars show numerous unidentified lines
in the whole optical range, especially in the 5100 - 5400 A interval. Because
Fe II transitions to high energy levels should be observed in this region, we
used semiempirical predicted wavelengths and gf-values of Fe II to identify
unknown lines. Semiempirical line data for Fe II computed by Kurucz are used to
synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000.
We determined a total of 109 new 4f levels for Fe II with energies ranging from
122324 cm^-1 to 128110 cm^-1. They belong to the Fe II subconfigurations
3d^6(^3P)4f (10 levels), 3d^6(^3H)4f (36 levels), 3d^6(^3F)4f (37 levels), and
3d^6(^3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7
levels), and 6d (4 levels) configurations. The new levels have allowed us to
identify more than 50% of the previously unidentified lines of HR 6000 in the
wavelength region 3800-8000 A. Tables listing the new energy levels are given
in the paper; tables listing the spectral lines with loggf>/=-1.5 that are
transitions to the 4f energy levels are given in the Online Material. These new
levels produce 18000 lines throughout the spectrum from the ultraviolet to the
infrared.Comment: Paper accepted by A&A for publicatio
Application of the Exact Muffin-Tin Orbitals Theory: the Spherical Cell Approximation
We present a self-consistent electronic structure calculation method based on
the {\it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen,
O. Jepsen and G. Krier (in {\it Lectures on Methods of Electronic Structure
Calculations}, Ed. by V. Kumar, O.K. Andersen, A. Mookerjee, Word Scientific,
1994 pp. 63-124) and O. K. Andersen, C. Arcangeli, R. W. Tank, T.
Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, (in {\it Mat. Res. Soc.
Symp. Proc.} {\bf 491}, 1998 pp. 3-34). The EMTO Theory can be considered as an
{\it improved screened} KKR (Korringa-Kohn-Rostoker) method which is able to
treat large overlapping potential spheres. Within the present implementation of
the EMTO Theory the one electron equations are solved exactly using the Green's
function formalism, and the Poisson's equation is solved within the {\it
Spherical Cell Approximation} (SCA). To demonstrate the accuracy of the
SCA-EMTO method test calculations have been carried out.Comment: 20 pages, 10 figure
Undoing measurement-induced dephasing in circuit QED
We analyze the backaction of homodyne detection and photodetection on
superconducting qubits in circuit quantum electrodynamics. Although both
measurement schemes give rise to backaction in the form of stochastic phase
rotations, which leads to dephasing, we show that this can be perfectly undone
provided that the measurement signal is fully accounted for. This result
improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method
suggested can be made to realize a perfect two-qubit parity measurement. We
propose a benchmarking experiment on a single qubit to demonstrate the method
using homodyne detection. By analyzing the limited measurement efficiency of
the detector and bandwidth of the amplifier, we show that the parameter values
necessary to see the effect are within the limits of existing technology
Optical Versus Mid-Infrared Spectroscopic Classification of Ultraluminous Infrared Galaxies
The origin of huge infrared luminosities of ultraluminous infrared galaxies
(ULIGs) is still in question. Recently, Genzel et al. made mid-infrared (MIR)
spectroscopy of a large number of ULIGs and found that the major energy source
in them is massive stars formed in the recent starburst activity; i.e.,
70% -- 80% of the sample are predominantly powered by the starburst. However,
it is known that previous optical spectroscopic observations showed that the
majority of ULIGs are classified as Seyferts or LINERs (low-ionization nuclear
emission-line regions). In order to reconcile this difference, we compare types
of emission-line activity for a sample of ULIGs which have been observed in
both optical and MIR. We confirm the results of previous studies that the
majority of ULIGs classified as LINERs based on the optical emission-line
diagnostics turn to be starburst-dominated galaxies based on the MIR ones.
Since the MIR spectroscopy can probe more heavily-reddened, inner parts of the
ULIGs, it is quite unlikely that the inner parts are powered by the starburst
while the outer parts are powered by non-stellar ionization sources. The most
probable resolution of this dilemma is that the optical emission-line nebulae
with the LINER properties are powered predominantly by shock heating driven by
the superwind activity; i.e., a blast wave driven by a collective effect of a
large number of supernovae in the central region of galaxy mergers.Comment: 15 pages, 2 tables, and 3 eps figures. The Astrophysical Journal
(Part 1), in pres
Steady state entanglement of two superconducting qubits engineered by dissipation
We present a scheme for the dissipative preparation of an entangled steady
state of two superconducting qubits in a circuit QED setup. Combining resonator
photon loss, a dissipative process already present in the setup, with an
effective two-photon microwave drive, we engineer an effective decay mechanism
which prepares a maximally entangled state of the two qubits. This state is
then maintained as the steady state of the driven, dissipative evolution. The
performance of the dissipative state preparation protocol is studied
analytically and verified numerically. In view of the experimental
implementation of the presented scheme we investigate the effects of potential
experimental imperfections and show that our scheme is robust to small
deviations in the parameters. We find that high fidelities with the target
state can be achieved both with state-of-the-art 3D, as well as with the more
commonly used 2D transmons. The promising results of our study thus open a
route for the demonstration of an entangled steady state in circuit QED.Comment: 12 pages, 5 figures; close to published versio
- …