158 research outputs found

    The TDNNS method for Reissner-Mindlin plates

    Full text link
    A new family of locking-free finite elements for shear deformable Reissner-Mindlin plates is presented. The elements are based on the "tangential-displacement normal-normal-stress" formulation of elasticity. In this formulation, the bending moments are treated as separate unknowns. The degrees of freedom for the plate element are the nodal values of the deflection, tangential components of the rotations and normal-normal components of the bending strain. Contrary to other plate bending elements, no special treatment for the shear term such as reduced integration is necessary. The elements attain an optimal order of convergence

    Error Analysis of an HDG Method with Impedance Traces for the Helmholtz Equation

    Full text link
    In this work, a novel analysis of a hybrid discontinuous Galerkin method for the Helmholtz equation is presented. It uses wavenumber, mesh size and polynomial degree independent stabilisation parameters leading to impedance traces between elements. With analysis techniques based on projection operators unique discrete solvability without a resolution condition and optimal convergence rates with respect to the mesh size are proven. The considered method is tailored towards enabling static condensation and the usage of iterative solvers
    • …
    corecore