2 research outputs found

    Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism

    Get PDF
    Kolaviron is a mixture of bioflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-B and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assay, and reporter assay. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the proinflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IB/NF-B signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/ antioxidant response element (ARE) pathway. RNAi experiments revealed that Nrf2 is need for the anti-inflammatory effect of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders

    Synthesis and Reaction of Pyrimidine Nucleosides

    No full text
    corecore