14,125 research outputs found

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Interaction-induced Interlayer Charge Transfer in the Extreme Quantum Limit

    Full text link
    An interacting bilayer electron system provides an extended platform to study electron-electron interaction beyond single layers. We report here experiments demonstrating that the layer densities of an asymmetric bilayer electron system oscillate as a function of perpendicular magnetic field that quantizes the energy levels. At intermediate fields, this interlayer charge transfer can be well explained by the alignment of the Landau levels in the two layers. At the highest fields where both layers reach the extreme quantum limit, however, there is an anomalous, enhanced charge transfer to the majority layer. Surprisingly, when the minority layer becomes extremely dilute, this charge transfer slows down as the electrons in the minority layer condense into a Wigner crystal. Furthermore, by examining the quantum capacitance of the dilute layer at high fields, the screening induced by the composite fermions in an adjacent layer is unveiled. The results highlight the influence of strong interaction in interlayer charge transfer in the regime of very high fields and low Landau level filling factors.Comment: Please see the formal version on PR

    XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)

    Full text link
    Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.Comment: 4 page

    Three-loop HTL gluon thermodynamics at intermediate coupling

    Get PDF
    We calculate the thermodynamic functions of pure-glue QCD to three-loop order using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T≃3  TcT\simeq3\;T_c. Our results suggest that HTLpt provides a systematic framework that can used to calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos. Published in JHE

    Multiscale Analysis of Spreading in a Large Communication Network

    Full text link
    In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how some dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large scale time-stamped data on mobile phone calls, we extend earlier results that point out the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multi-scale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one

    Kondo-like behaviors in magnetic and thermal properties of single crystal Tm5Si2Ge2

    Full text link
    We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman method and performed XRD, EDS, magnetization, ac and dc magnetic susceptibilities, specific heat, electrical resistivity and XPS experiments. It crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline electric field. The ground state exhibits the long range antiferromagnetic order with the ferromagnetically coupled magnetic moments in the ac plane below 8.01 K, while the exited states exhibit the reduction of magnetic moment and magnetic entropy and -log T-behaviors observed in Kondo materials.Comment: 8 pages, 13 figure
    • …
    corecore