2,895 research outputs found

    Interaction-induced Interlayer Charge Transfer in the Extreme Quantum Limit

    Full text link
    An interacting bilayer electron system provides an extended platform to study electron-electron interaction beyond single layers. We report here experiments demonstrating that the layer densities of an asymmetric bilayer electron system oscillate as a function of perpendicular magnetic field that quantizes the energy levels. At intermediate fields, this interlayer charge transfer can be well explained by the alignment of the Landau levels in the two layers. At the highest fields where both layers reach the extreme quantum limit, however, there is an anomalous, enhanced charge transfer to the majority layer. Surprisingly, when the minority layer becomes extremely dilute, this charge transfer slows down as the electrons in the minority layer condense into a Wigner crystal. Furthermore, by examining the quantum capacitance of the dilute layer at high fields, the screening induced by the composite fermions in an adjacent layer is unveiled. The results highlight the influence of strong interaction in interlayer charge transfer in the regime of very high fields and low Landau level filling factors.Comment: Please see the formal version on PR

    Rings and Radial Waves in the Disk of the Milky Way

    Full text link
    We show that in the anticenter region, between Galactic longitudes of 110<l<229110^\circ<l<229^\circ, there is an oscillating asymmetry in the main sequence star counts on either side of the Galactic plane using data from the Sloan Digital Sky Survey. This asymmetry oscillates from more stars in the north at distances of about 2 kpc from the Sun to more stars in the south at 4-6 kpc from the Sun to more stars in the north at distances of 8-10 kpc from the Sun. We also see evidence that there are more stars in the south at distances of 12-16 kpc from the Sun. The three more distant asymmetries form roughly concentric rings around the Galactic center, opening in the direction of the Milky Way's spiral arms. The northern ring, 9 kpc from the Sun, is easily identified with the previously discovered Monoceros Ring. Parts of the southern ring at 14 kpc from the Sun (which we call the TriAnd Ring) have previously been identified as related to the Monoceros Ring and others have been called the Triangulum Andromeda Overdensity. The two nearer oscillations are approximated by a toy model in which the disk plane is offset by of the order 100 pc up and then down at different radii. We also show that the disk is not azimuthally symmetric around the Galactic anticenter and that there could be a correspondence between our observed oscillations and the spiral structure of the Galaxy. Our observations suggest that the TriAnd and Monoceros Rings (which extend to at least 25 kpc from the Galactic center) are primarily the result of disk oscillations.Comment: 19figures, 2tables, ApJ accepte

    Mapping the Milky Way with LAMOST II: the stellar halo

    Full text link
    The radial number density and flattening of the Milky Way's stellar halo is measured with 5351\mathrm{5351} metal-poor ([Fe/H]<1<-1) K giants from LAMOST DR3, using a nonparametric method which is model independent and largely avoids the influence of halo substucture. The number density profile is well described by a single power law with index 5.030.64+0.645.03^{+0.64}_{-0.64}, and flattening that varies with radius. The stellar halo traced by LAMOST K giants is more flattened at smaller radii, and becomes nearly spherical at larger radii. The flattening, qq, is about 0.64, 0.8, 0.96 at r=15r=15, 20 and 30 kpc (where r=R2+[Z/q(r)]2r=\sqrt{R^2+\left[Z/q\left(r\right)\right]^2}), respectively. Moreover, the leading arm of the Sagittarius dwarf galaxy tidal stream in the north, and the trailing arm in the south, are significant in the residual map of density distribution. In addition, an unknown overdensity is identified in the residual map at (R,Z)=(30,15) kpc.Comment: 16 pages, 24 figures, accepted by MNRA

    The K giant stars from the LAMOST survey data I: identification, metallicity, and distance

    Full text link
    We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about 2 million LAMOST spectra observed during the pilot survey and the first year survey, we select 298,036 K giant candidates. The metallicities of the sample are also estimated with uncertainty of 0.130.290.13\sim0.29\,dex based on the equivalent widths of Mgb_{\rm b} and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the estimated distance modulus at K=11K=11\,mag, which is the median brightness of the K giant sample, is about 0.6\,mag, corresponding to 30\sim30% in distance. As a scientific verification case, the trailing arm of the Sagittarius stream is clearly identified with the selected K giant sample. Moreover, at about 80\,kpc from the Sun, we use our K giant stars to confirm a detection of stream members near the apo-center of the trailing tail. These rediscoveries of the features of the Sagittarius stream illustrate the potential of the LAMOST survey for detecting substructures in the halo of the Milky Way.Comment: 24 pages, 20 figures, submitted to Ap

    Systemic inflammation, body composition, and physical performance in old community-dwellers

    Get PDF
    Background Chronic inflammation, changes in body composition, and declining physical function are hallmarks of the ageing process. The aim of the present study was to provide a preliminary characterisation of the relationship among these age-related phenomena via multivariate modelling. Methods Thirty-five old adults (OAs) and 17 young adults (YAs) were enrolled. The volume of skeletal muscle, subcutaneous adipose tissue (SAT), and intermuscular adipose tissue (IMAT) of the thigh was quantified by three-dimensional magnetic resonance imaging. Muscle strength was measured by knee extension strength testing. In OAs, physical performance was further assessed via the Short Physical Performance Battery (SPPB). Multi-block partial least squares-discriminant analysis (PLS-DA) was employed to explore the relationship among inflammatory profiles and functional and imaging parameters. Double cross-validation procedures were used to validate the predictive ability of the PLS-DA model. Results The optimal complexity of the PLS-DA model was found to be two latent variables. The proportion of correct classification was 92.3% in calibration (94.1% in YAs and 91.4% in OAs), 84.6% in internal validation (95.3% in YAs and 78.5% in OAs), and 82.6% in external validation (94% in YAs and 76.9% in OAs). Relative to YAs, OAs were characterised by smaller muscle volume, greater IMAT volume, lower muscle strength, and higher levels of myeloperoxidase, P-selectin, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Compared with OAs with SPPB &gt;8, those scoring 8 were characterised by smaller muscle volume, greater SAT volume, lower muscle strength, and higher levels of interleukin 1 beta, 6, 10, 12, 13, tumour necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor. Conclusions Multi-block PLS-DA identified distinct patterns of relationships among circulating cytokines and functional and imaging parameters in persons of different ages and varying levels of physical performance. The longitudinal implementation of such an innovative strategy could allow for the tracking of health status over time, the early detection of deviations in health trajectories, and the monitoring of response to treatments

    Estimation of distances to stars with stellar parameters from LAMOST

    Full text link
    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.Comment: 11 pages, 12 figures; accepted for publication in A

    The site conditions of the Guo Shou Jing Telescope

    Full text link
    The weather at Xinglong Observing Station, where the Guo Shou Jing Telescope (GSJT) is located, is strongly affected by the monsoon climate in north-east China. The LAMOST survey strategy is constrained by these weather patterns. In this paper, we present a statistics on observing hours from 2004 to 2007, and the sky brightness, seeing, and sky transparency from 1995 to 2011 at the site. We investigate effects of the site conditions on the survey plan. Operable hours each month shows strong correlation with season: on average there are 8 operable hours per night available in December, but only 1-2 hours in July and August. The seeing and the sky transparency also vary with seasons. Although the seeing is worse in windy winters, and the atmospheric extinction is worse in the spring and summer, the site is adequate for the proposed scientific program of LAMOST survey. With a Monte Carlo simulation using historical data on the site condition, we find that the available observation hours constrain the survey footprint from 22h to 16h in right ascension; the sky brightness allows LAMOST to obtain the limit magnitude of V = 19.5mag with S/N = 10.Comment: 10 pages, 8 figures, accepted for publication in RA

    The First Hypervelocity Star from the LAMOST Survey

    Get PDF
    We report the first hypervelocity star (HVS) discovered from the LAMOST spectroscopic survey. It is a B-type star with a heliocentric radial velocity about 620 km/s, which projects to a Galactocentric radial velocity component of ~477 km/s. With a heliocentric distance of ~13 kpc and an apparent magnitude of ~13 mag, it is the nearest bright HVS currently known. With a mass of ~9Msun, it is one of the three most massive HVSs discovered so far. The star is clustered on the sky with many other known HVSs, with the position suggesting a possible connection to Galactic center structures. With the current poorly-determined proper motion, a Galactic center origin of this HVS remains consistent with the data at the 1sigma level, while a disk run-away origin cannot be excluded. We discuss the potential of the LAMOST survey to discover a large statistical sample of HVSs of different types.Comment: 5 pages, 5 figures, accepted for publication in ApJL, updated contour plot for the ejection positions after correcting a mistake in the calculatio

    Fixing the Reference Frame for PPMXL Proper Motions Using Extragalactic Sources

    Get PDF
    We quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Veron-Cetty & Veron Catalog of Quasars. Although the majority of the sources are from the Veron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measureable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu, Ma, & Zhou (2011), and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. We average the proper motions of 158,106 extragalactic objects in bins of 3x3 degrees and present a table of proper motion corrections.Comment: Accepted for publication in RAA; 12 pages, 6 figures (Fig. 1 at reduced resolution); full table of corrections available in online journal, with arxiv ancillary files (as ASCII table), or by reques
    corecore