20 research outputs found

    Ebola: translational science considerations

    Get PDF
    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective

    Assessing the Stiffness of Spinal Fusion in Animal Models

    No full text
    The clinical goal of spinal fusion is to reduce motion and the associated pain. Therefore, measuring motion under loading is critical. The purpose of this study was to validate four-point bending as a means to mechanically evaluate simulated fusions in dog and rabbit spines. We hypothesized that this method would be more sensitive than manual palpation and would be able to distinguish unilateral vs bilateral fusion. Spines from four mixed breed dogs and four New Zealand white rabbits were used to simulate posterolateral fusion with polymethyl methacrylate as the fusion mass. We performed manual palpation and nondestructive mechanical testing in four-point bending in four planes of motion: flexion, extension, and right and left bending. This testing protocol was used for each specimen in three fusion modes: intact, unilateral, and bilateral fusion. Under manual palpation, all intact spines were rated as not fused, and all unilateral and bilateral simulated fusions were rated as fused. In four-point bending, dog spines were significantly stiffer after unilateral fusion compared with intact in all directions. Additionally, rabbit spines were stiffer in flexion and left bending after unilateral fusion. All specimens exhibited significant differences between intact and bilateral fusion except the rabbit in extension. For unilateral vs bilateral fusion, significant differences were present for right bending in the dog model and for flexion in the rabbit. Unilateral fusion can provide enough stability to constitute a fused grade by manual palpation but may not provide structural stiffness comparable to bilateral fusion

    Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment.

    Get PDF
    BACKGROUND: Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission-with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. METHODS: A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2-10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). RESULTS: Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10-40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2-10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. DISCUSSION: These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA.This study was funded by a grant from Medicines for Malaria Venture. LCO is also funded by a UK Royal Society Dorothy Hodgkin fellowship. ACG and LCO also acknowledge funding from the Bill and Melinda Gates Foundation and the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement. The funders at MMV were involved in the initial design of the study and commented on the results, but had no further role in the analysis or writing of the manuscript
    corecore