11 research outputs found

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data

    No full text
    We quantified the potential effects of physiologic artifact on the estimation of EEG band power in a cohort of typically developing children in order to guide artifact rejection methods in quantitative EEG data analysis in developmental populations. High density EEG was recorded for 2 min while children, ages 2-6, watched a video of bubbles. Segments of data were categorized as blinks, saccades, EMG or artifact-free, and both absolute and relative power in the theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (35-45 Hz) bands were calculated in 9 regions for each category. Using a linear mixed model approach with artifact type, region and their interaction as predictors, we compared mean band power between clean data and each type of artifact. We found significant differences in mean relative and absolute power between artifacts and artifact-free segments in all frequency bands. The magnitude and direction of the differences varied based on power type, region, and frequency band. The most significant differences in mean band power were found in the gamma band for EMG artifact and the theta band for ocular artifacts. Artifact detection strategies need to be sensitive to the oscillations of interest for a given analysis, with the most conservative approach being the removal of all EMG and ocular artifact from EEG data. Quantitative EEG holds considerable promise as a clinical biomarker of both typical and atypical development. However, there needs to be transparency in the choice of power type, regions of interest, and frequency band, as each of these variables are differentially vulnerable to noise, and therefore, their interpretation depends on the methods used to identify and remove artifacts

    How and why do infants imitate? An ideomotor approach to social and imitative learning in infancy (and beyond)

    No full text
    corecore