649 research outputs found
KASR: A Reliable and Practical Approach to Attack Surface Reduction of Commodity OS Kernels
Commodity OS kernels have broad attack surfaces due to the large code base
and the numerous features such as device drivers. For a real-world use case
(e.g., an Apache Server), many kernel services are unused and only a small
amount of kernel code is used. Within the used code, a certain part is invoked
only at runtime while the rest are executed at startup and/or shutdown phases
in the kernel's lifetime run. In this paper, we propose a reliable and
practical system, named KASR, which transparently reduces attack surfaces of
commodity OS kernels at runtime without requiring their source code. The KASR
system, residing in a trusted hypervisor, achieves the attack surface reduction
through a two-step approach: (1) reliably depriving unused code of executable
permissions, and (2) transparently segmenting used code and selectively
activating them. We implement a prototype of KASR on Xen-4.8.2 hypervisor and
evaluate its security effectiveness on Linux kernel-4.4.0-87-generic. Our
evaluation shows that KASR reduces the kernel attack surface by 64% and trims
off 40% of CVE vulnerabilities. Besides, KASR successfully detects and blocks
all 6 real-world kernel rootkits. We measure its performance overhead with
three benchmark tools (i.e., SPECINT, httperf and bonnie++). The experimental
results indicate that KASR imposes less than 1% performance overhead (compared
to an unmodified Xen hypervisor) on all the benchmarks.Comment: The work has been accepted at the 21st International Symposium on
Research in Attacks, Intrusions, and Defenses 201
Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses
BACKGROUND: NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS: The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. RESULTS: We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION: This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02313077. FUNDING: U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA)
Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations
Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data
Determining the functional structure of biological networks is a central goal
of systems biology. One approach is to analyze gene expression data to infer a
network of gene interactions on the basis of their correlated responses to
environmental and genetic perturbations. The inferred network can then be
analyzed to identify functional communities. However, commonly used algorithms
can yield unreliable results due to experimental noise, algorithmic
stochasticity, and the influence of arbitrarily chosen parameter values.
Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of
the relationship between communities. Here, we present methods to robustly
detect coregulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data.
Applying a recently developed community detection algorithm to the network of
interactions identified with the context likelihood of relatedness (CLR)
method, we show that a hierarchy of network communities can be identified.
These communities significantly enrich for gene ontology (GO) terms, consistent
with them representing biologically meaningful groups. Further, analysis of the
most significantly enriched communities identified several candidate new
regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when
artificial noise, modeling experimental noise, is added to the data. We find
that noise mainly acts conservatively, increasing the relatedness required for
a network link to be reliably assigned and decreasing the size of the core
communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1
was not uploaded but is available by contacting the author. 27 pages, 5
figures, 15 supplementary file
Efficacy of thalidomide in a girl with inflammatory calcinosis, a severe complication of juvenile dermatomyositis
We report a 14-year-old girl with juvenile dermatomyositis (JDM) complicated by severe inflammatory calcinosis successfully treated with thalidomide. She was diagnosed as JDM when she was 4 years old after a few months of increasing lethargy, muscle pain, muscle weakness, and rash. During three months, clinical manifestations and abnormal laboratory findings were effectively treated with oral prednisolone. However, calcinosis was recognized 18 months after disease onset. Generalized calcinosis rapidly progressed with high fever, multiple skin/subcutaneous inflammatory lesions, and increased level of CRP. Fifty mg/day (1.3 mg/kg day) of oral thalidomide was given for the first four weeks, and then the dose was increased to 75 mg/day. Clinical manifestations subsided, and inflammatory markers had clearly improved. Frequent high fever and local severe pain with calcinosis were suppressed. The levels of FDP-E, IgG, and tryglyceride, which were all elevated before the thalidomide treatment, were gradually returned to the normal range. Over the 18 months of observation up to the present, she has had no inflammatory calcinosis, or needed any hospitalization, although established calcium deposits still remain. Her condition became painless, less extensive and less inflammatory with the CRP level below 3.08 mg/dL. Recent examination by whole-body 18F-FDG-PET-CT over the 15 months of thalidomide treatment demonstrated fewer hot spots around the subcutaneous calcified lesions
FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies
Background: Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings: In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance: This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions tha
Pelvic tenderness is not limited to the prostate in chronic prostatitis/chronic pelvic pain syndrome (CPPS) type IIIA and IIIB: comparison of men with and without CP/CPPS
Background: We wished to determine if there were differences in pelvic and non-pelvic tenderness between men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) Type III and men without pelvic pain.
Methods: We performed the Manual Tender Point Survey (MTPS) as described by the American College of Rheumatology on 62 men with CP/CPPS Type IIIA and IIIB and 98 men without pelvic pain. We also assessed tenderness of 10 external pelvic tender points (EPTP) and of 7 internal
pelvic tender points (IPTP). All study participants completed the National Institutes of Health Chronic Prostatitis Symptom Inventory (NIH CPSI).
Results: We found that men with CPPS were significantly more tender in the MTPS, the EPTPS and the IPTPS. CPSI scores correlated with EPTP scale but not with IPTP scale or prostate tenderness. Prostatic tenderness was present in 75% of men with CPPS and in 50% of men without
CPPS. Expressed prostatic fluid leukocytosis was not associated with prostatic tenderness.
Conclusion: Men with CP/CPPS have more tenderness compared to men without CPPS. Tenderness in men with CPPS is distributed throughout the pelvis and not specific to the prostate
Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia
Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development
- …