15 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Seven-year kinetics of RTS, S/AS01-induced anti-CSP antibodies in young Kenyan children

    Get PDF
    Background RTS,S/AS01, the leading malaria vaccine has been recommended by the WHO for widespread immunization of children at risk. RTS,S/AS01-induced anti-CSP IgG antibodies are associated with the vaccine efficacy. Here, the long-term kinetics of RTS,S/AS01-induced antibodies was investigated. Methods 150 participants were randomly selected from the 447 children who participated in the RTS,S/AS01 phase IIb clinical trial in 2007 from Kilifi-Kenya. Cumulatively, the retrospective follow-up period was 93 months with annual plasma samples collection. The levels of anti-CSP IgM, total IgG, IgG1, IgG2, IgG3, and IgG4 antibodies were then determined using an enzyme-linked immunosorbent assay. Results RTS,S/AS01 induced high levels of anti-CSP IgG antibodies which exhibited a rapid waning over 6.5 months post-vaccination, followed by a slower decay over the subsequent years. RTS,S/AS01-induced anti-CSP IgG antibodies remained elevated above the control group levels throughout the 7 years follow-up period. The anti-CSP IgG antibodies were mostly IgG1, IgG3, IgG2, and to a lesser extent IgG4. IgG2 predominated in later timepoints. RTS,S/AS01 also induced high levels of anti-CSP IgM antibodies which increased above the control group levels by month 3. The controls exhibited increasing levels of the anti-CSP IgM antibodies which caught up with the RTS,S/AS01 vaccinees levels by month 21. In contrast, there were no measurable anti-CSP IgG antibodies among the controls. Conclusion RTS,S/AS01-induced anti-CSP IgG antibodies kinetics are consistent with long-lived but waning vaccine efficacy. Natural exposure induces anti-CSP IgM antibodies in children, which increases with age, but does not induce substantial levels of anti-CSP IgG antibodies

    Comparative performance of WANTAI ELISA for total immunoglobulin to receptor binding protein and an ELISA for IgG to spike protein in detecting SARS-CoV-2 antibodies in Kenyan populations

    No full text
    Many SARS-CoV-2 antibody detection assays have been developed but their differential performance is not well described. In this study we compared an in-house (KWTRP) ELISA which has been used extensively to estimate seroprevalence in the Kenyan population with WANTAI, an ELISA which has been approved for widespread use by the WHO. Using a wide variety of sample sets including pre-pandemic samples (negative gold standard), SARS-CoV-2 PCR positive samples (positive gold standard) and COVID-19 test samples from different periods (unknowns), we compared performance characteristics of the two assays. The overall concordance between WANTAI and KWTRP was 0.97 (95% CI, 0.95-0.98). For WANTAI and KWTRP, sensitivity was 0.95 (95% CI 0.90-0.98) and 0.93 (95% CI 0.87-0.96), respectively. Specificity for WANTAI was 0.98 (95% CI, 0.96-0.99) and 0.99 (95% CI 0.96-1.00) while KWTRP specificity was 0.99 (95% CI, 0.98-1.00) and 1.00 using pre-pandemic blood donors and pre-pandemic malaria cross-sectional survey samples respectively. Both assays show excellent characteristics to detect SARS-CoV-2 antibodies

    COVID-19 transmission dynamics underlying epidemic waves in Kenya

    No full text
    Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or infection spreads to susceptible subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socioeconomic and urban–rural population structure are critical determinants of viral transmission in Kenya

    Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors

    No full text
    The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti–SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April–June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa

    Anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin g antibody seroprevalence among truck drivers and assistants in Kenya

    No full text
    In October 2020, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G seroprevalence among truck drivers and their assistants (TDA) in Kenya was 42.3%, higher than among healthcare workers and blood donors. Truck drivers and their assistants transport essential supplies during the coronavirus disease 2019 pandemic, placing them at increased risk of being infected and of transmitting SARS-CoV-2 over a wide geographical area

    Maintaining laboratory quality assurance and safety in a pandemic: experiences from the KEMRI-Wellcome Trust Research Programme laboratory’s COVID-19 response

    No full text
    Laboratory diagnosis plays a critical role in the containment of a pandemic. Strong laboratory quality management systems (QMS) are essential for laboratory diagnostic services. However, low laboratory capacities in resource-limited countries has made the maintenance of laboratory quality assurance, especially during a pandemic, a daunting task. In this paper, we describe our experience of how we went about providing diagnostic testing services for SARS-CoV-2 through laboratory reorganization, redefining of the laboratory workflow, and training and development of COVID-19 documented procedures, all while maintaining the quality assurance processes during the COVID-19 pandemic at the Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme (KWTRP) laboratory. The KWTRP laboratory managed to respond to the COVID-19 outbreak in Kenya by providing diagnostic testing for the coastal region of the country, while maintaining its research standard quality assurance processes. A COVID-19 team comprising of seven sub-teams with assigned specific responsibilities and an organizational chart with established reporting lines were developed. Additionally, a total of four training sessions were conducted for county Rapid Response Teams (RRTs) and laboratory personnel. A total of 11 documented procedures were developed to support the COVID-19 testing processes, with three for the pre-analytical phases, seven for the analytical phase, and one for the post-analytical phase. With the workflow re-organization, the development of appropriate standard operating procedures, and training, research laboratories can effectively respond to pandemic outbreaks while maintaining research standard QMS procedures
    corecore