30 research outputs found

    Evidence of Henipavirus Infection in West African Fruit Bats

    Get PDF
    Henipaviruses are emerging RNA viruses of fruit bat origin that can cause fatal encephalitis in man. Ghanaian fruit bats (megachiroptera) were tested for antibodies to henipaviruses. Using a Luminex multiplexed microsphere assay, antibodies were detected in sera of Eidolon helvum to both Nipah (39%, 95% confidence interval: 27–51%) and Hendra (22%, 95% CI: 11–33%) viruses. Virus neutralization tests further confirmed seropositivity for 30% (7/23) of Luminex positive serum samples. Our results indicate that henipavirus is present within West Africa

    Nipah Virus Transmission in a Hamster Model

    Get PDF
    Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks

    Interferon Production and Signaling Pathways Are Antagonized during Henipavirus Infection of Fruit Bat Cell Lines

    Get PDF
    Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system

    Identification and Characterization of a New Orthoreovirus from Patients with Acute Respiratory Infections

    Get PDF
    First discovered in the early 1950s, reoviruses (respiratory enteric orphan viruses) were not associated with any known disease, and hence named orphan viruses. Recently, our group reported the isolation of the Melaka virus from a patient with acute respiratory disease and provided data suggesting that this new orthoreovirus is capable of human-to-human transmission and is probably of bat origin. Here we report yet another Melaka-like reovirus (named Kampar virus) isolated from the throat swab of a 54 year old male patient in Kampar, Perak, Malaysia who was suffering from high fever, acute respiratory disease and vomiting at the time of virus isolation. Serological studies indicated that Kampar virus was transmitted from the index case to at least one other individual and caused respiratory disease in the contact case. Sequence analysis of the four small class genome segments indicated that Kampar and Melaka viruses are closely related. This was confirmed by virus neutralization assay, showing an effective two-way cross neutralization, i.e., the serum against one virus was able to neutralize the other. Although the exact origin of Kampar virus is unknown, epidemiological tracing revealed that the house of the index case is surrounded by fruit trees frequently visited by fruit bats. There is a high probability that Kampar virus originated from bats and was transmitted to humans via bat droppings or contaminated fruits. The discovery of Kampar virus highlights the increasing trend of emergence of bat zoonotic viruses and the need to expand our understanding of bats as a source of many unknown viruses

    Rabies-Related Knowledge and Practices Among Persons At Risk of Bat Exposures in Thailand

    Get PDF
    Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. We surveyed persons regularly exposed to bats and bat habitats in Thailand to assess rabies‐related knowledge and practices. Targeted groups included guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. Of the 106 people interviewed, 11 (10%) identified bats as a source of rabies. History of a bat bite/scratch was reported by 29 (27%), and 38 (36%) expressed either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of transmission (68% vs. 90%, p=0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p=0.003). These findings indicate a need for educational outreach in Thailand to raise awareness of bat rabies, promote exposure prevention, and ensure health‐seeking behaviors for bat‐inflicted wounds, particularly among at‐risk groups

    A review of zoonotic infection risks associated with the wild meat trade in Malaysia.

    Get PDF
    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies

    Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy

    Get PDF
    Background - Pathogenic variants in MYBPC3, encoding cardiac MyBP-C, are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped HCM cohorts have precluded detailed genotype-phenotype correlations. Methods - Patients with HCM and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Variant types and locations were analyzed, morphologic severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, LVAD/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. Results - Among 4,756 genotyped HCM patients in SHaRe, 1,316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or non-truncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5' - 3' quartiles or by founder variant subgroup). Non-truncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, p<0.001 vs. gnomAD common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ~90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. Conclusions - Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Non-truncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss-of-function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating vs. non-truncating variants
    corecore