6 research outputs found

    Soluble Beta-Amyloid Precursor Protein Is Related to Disease Progression in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPa and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value. Methodology/Principal Findings: In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson’s disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPa a, sAPPß and neurofilaments (NfH SMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPa and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfH SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p,0.01). High CSF NfH SMI3 was linked to low CSF sAPPa and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfH SMI35 /CSF sAPPa,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04). Conclusions: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axona

    Plasma Neurofilament Heavy Chain Levels Correlate to Markers of Late Stage Disease Progression and Treatment Response in SOD1(G93A) Mice that Model ALS

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials. Methodology/Principal Findings: In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials. Conclusions/Significance: These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS

    Neurotoxicity and ALS: Insights into Pathogenesis

    No full text
    corecore