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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive
degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is
largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable
biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of
treatment trials.

Methodology/Principal Findings: In this study, using the well-established SOD1G93A mouse model of ALS and a new in-
house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both
functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma
levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased
plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of
spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease
modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an
outcome measure for treatment trials.

Conclusions/Significance: These results show that plasma NfH levels closely reflect later stages of disease progression and
therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease
progression in ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disorder characterised by progressive degeneration of motor

neurons in the motor cortex, brain stem and spinal cord, leading

to paralysis and death, typically within 3–5 years from symptom

onset. Riluzole is the only FDA-approved treatment for ALS,

which prolongs median survival by only 2–3 months in patients

treated for at least 18 months [1]. Importantly, the greatest benefit

of Riluzole is observed when treatment is initiated early in the

course of the disease, highlighting the importance of early

intervention in ALS [2]. In the absence of a reliable diagnostic

biomarker, the recognition of ALS relies largely on clinical

assessment and electrophysiological findings, which provide

evidence of upper and lower motor neuron involvement [3].

The lack of more specific investigative tools and of easily

measurable biomarkers typically results in a 12–14 month delay

between symptom onset to diagnosis, for both sporadic (sALS) and

familial ALS (fALS) [4]. This delay not only prevents patients from

receiving early administration of the only available therapy,

Riluzole, but also impedes their early recruitment to clinical trials,

thereby reducing the likelihood of success of potential disease-

modifying agents. Therefore, there is an urgent need to develop

biomarkers for ALS, to both speed up diagnosis and to monitor

disease progression. This is particularly true for clinical trials,

where such a biomarker would be invaluable for statistical power

and as an indicator of both positive and negative responses to

treatment.

Although the precise underlying pathology of ALS is not yet

fully understood, a number of molecular mechanisms have been

identified that are present in both human ALS and in mouse
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models of ALS. Transgenic mice carrying the mutant human Cu/

Zn superoxide dismutase 1(SOD1) gene, causative for approximately

10–20% of familial ALS cases [5], have a disease phenotype that

resembles that of ALS patients including progressive motor neuron

degeneration accompanied by gradual muscle paralysis and

premature death [6]. These mice have been invaluable in

identifying several pathological mechanisms that contribute to

ALS. ALS is now known to be a multifactorial disorder that

involves excitotoxicity, dysfunctional RNA metabolism, mitochon-

drial dysfunction, endoplasmic reticulum stress, proteasomal

dysfunction, activation of inflammatory pathways and, important-

ly for this study, impaired axonal transport and protein

aggregation [7]. Several proteins have been shown to aggregate

in tissue of ALS patients and animal models of ALS including

structural proteins of the axonal cytoskeleton such as neurofila-

ments [8]. Despite the complexity of ALS pathogenesis, the

multitude of molecular mechanisms involved in the disease process

not only provide targets for development of novel therapeutics but

may also provide clues for the development of biomarkers of

disease progression.

The neurofilament proteins (Nfs) are a major component of the

cytoskeleton and play an important role in the maintenance of

axonal calibre [9]. Nfs are assembled into a unique heteropolymer

structure with a specific stoichiometric composition of at least four

subunits: neurofilament light chain (NfL, 68 kDa), neurofilament

medium chain (NfM, 150 kDa), neurofilament heavy chain (NfH,

200 kDa) and alpha-internexin (INA, 66 kDa) [10]. The three

neurofilament subunits differ mainly in the length of the C-

terminal tail domain, which results in different states of

phosphorylation and susceptibility to proteases [11]. Mutations

in Nfs have been reported in several neurodegenerative diseases,

including Alzheimer’s disease (AD), Parkinson’s disease (PD),

Charcot-Marie-Tooth Disease, giant axonal neuropathy, diabetic

neuropathy, progressive supranuclear palsy, spinal muscular

atrophy, as well as ALS [9]. Although only a small number of

variants in the NfH gene have been identified in approximately

1% sALS patients [12,13], one common pathological finding of

both sALS and fALS is the accumulation of phosphorylated Nfs in

the perikaryon and in axonal spheroids, which are normally only

present in distal axons and nerve terminals [14]. Manipulations of

the stoichiometry of the three Nf subunits has been shown to

facilitate the development of early-onset motor neuron death in

transgenic mouse models of ALS [15,16,17], thus supporting the

critical involvement of Nfs in ALS pathology.

Monitoring of tissue specific components released into biological

fluids during disease progression can be used to aid diagnosis and

reflect pathological severity [4,18,19]. Nfs levels in the cerebro-

spinal fluid (CSF), being the closest body fluid compartment to the

CNS, have been investigated as potential disease biomarkers in

several neurological disorders. Recent studies have shown that

CSF Nf levels might serve as a prognostic marker in multiple

sclerosis [20], may assist in the differential diagnosis between

frontotemporal dementia (FTD) and early onset AD [21], and may

help distinguish Parkinsonian syndromes in combination with CSF

tau levels [22,23]. Furthermore, CSF Nf levels are much higher in

ALS than in other neurodegenerative disorders such as AD [23–

26] and correlate inversely with disease duration [27]. It has also

been suggested that the phosphorylation state of Nfs can be

indicative of neuronal pathology and high levels of phosphorylated

NfH have been detected in neurodegenerative disorders [9].

However, because of its invasive nature, serial CSF sampling is not

tolerated by all patients and CSF is clearly not the ideal biofluid for

repeated sampling for the purpose of monitoring progression in

ALS. Thus, a functionally validated Nf-based blood biomarker for

the longitudinal monitoring of disease development and informa-

tive of treatment response would be highly desirable.

Previous studies have identified a crucial analytical problem in

accurate, reproducible quantification of NfH levels in blood

samples due to the presence of Nf aggregates [28]. These

aggregates are a source of endogenous binding for NfH in plasma

that leads to a ‘hook effect’ during serial dilutions. To overcome

this problem, we recently developed a method in which Nf

aggregates are gently disaggregated, allowing accurate and highly

sensitive quantification of plasma NfH levels using ELISA [28]. In

this study, we have used this method to determine the longitudinal

changes in plasma NfH levels in transgenic mice carrying mutant

human SOD1G93A gene during disease progression. Importantly,

we have correlated these changes with the decline in neuromus-

cular function and motor neuron survival. In addition, we

undertook a differential analysis of the NfH phosphorylation

status. Thus, in separate assays, we examined hyperphosphory-

lated and variably-phosphorylated NfH levels. Finally, in order to

establish the potential of this approach as an outcome measure in

clinical trials, we examined whether plasma NfH levels are

improved following treatment with arimoclomol, which we have

previously shown to modify disease progression in SOD1G93A mice

[29,30], and which is currently in a PhaseII/III clinical trial in

mutant SOD1 related fALS patients [31].

Results

Plasma NfH Levels in SOD1 Mice Increase Significantly
from a Late Symptomatic Stage

Hyperphosphorylated (NfHSMI34) and variably-phosphorylated

(NfHSMI35) NfH levels in plasma from mice in each experimental

group were determined at various stages of disease using a 4-layer

sandwich ELISA.

As can be seen in Fig. 1A, in WT mice, the mean plasma levels

of hyperphosphorylated NfHSMI34 remained unchanged during

the duration of the study, up to 120 days of age (Friedman test,

p = 0.518). In contrast, in SOD1 mice, there was a significant

change in NfHSMI34 levels during overall disease progression

(Friedman test, p,0.0001). Plasma NfHSMI34 levels were higher in

SOD1 mice than in WT littermates at all ages examined, although

this difference only reached statistical significance from 105 days

of age onwards (65 days: SOD1 46.2613.1, WT 40.668.9;

90 days: SOD1 81.8615.8, WT 52.7612.2; 105 days: SOD1

155.4619.3, WT 26.766.8, p,0.0001; 120 days: SOD1

328.4640.3, WT 43.5617.3, p,0.0001; mean 6 S.E.M ng/

mL; Mann-Whitney test; Fig. 1A).

The mean levels of plasma NfHSMI35 (Fig. 1B), the variably-

phosphorylated NfH which is considered to be the less patholog-

ical form of NfH, also remained stable in WT mice throughout the

study period (Friedman test, p = 0.405). In contrast, in SOD1

mice, plasma NfHSMI35 levels increased significantly throughout

disease progression (Friedman test, p,0.0001), although not as

dramatically as NfHSMI34, the more pathological phosphoform,

and became significantly higher than WT from 105 days of age

onwards (65 days: SOD1 74.0620.8, WT 58.0616.0; 90 days:

SOD1 68.8614.8, WT 46.2614.2; 105 days, SOD1 104.8617.0,

WT 34.7611.6, p = 0.002; 120 days, SOD1 161.0621.5, WT

21.669.9, p,0.0001; mean 6 S.E.M ng/mL; Mann-Whitney

test; Fig. 1B).

In addition, in WT mice, a comparison of NfHSMI35 and

NfHSMI34 levels showed that plasma levels of NfH were not only

low, but that there was also no difference in the relative levels of

the two NfH phosphoforms at any age examined (Mann-Whitney

test, p = 0.479, 0.353, 0.817, 0.565 at 65, 90, 105, and 120 days,
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respectively; data not shown). In contrast, in SOD1 mice, a

comparison of the relative levels of the two NfH phosphoforms

revealed that levels of NfHSMI34 compared with NfHSMI35

increased as disease advanced (comparison NfHSMI34: NfHSMI35

at 65 days: p = 0.507; 90 days: p = 0.546; 105 days: p = 0.068;

120 days: p = 0.004; Mann-Whitney Test). Thus, in SOD1 mice

plasma levels of the more pathological NfHSMI34 phosphoform

increased to a greater extent than the less pathological NfHSMI35.

Correlations between Plasma NfH Levels and Functional
Measures of Disease Progression in SOD1 Mice

Increased plasma NfH levels inversely correlate with grip

strength in SOD1 mice. In order to establish the relationship

between the changes in plasma NfH levels detected in SOD1 mice

and the decline in neuromuscular function that occurs as disease

progresses in these mice, a number of functional outcome

measures were investigated. Firstly, at each time point, grip

strength and body weight was determined in each mouse prior to

blood collection. The analysis of the correlation between plasma

NfH levels and the corresponding mean grip strength is

summarised in Fig. 2. The results show that in SOD1 mice, there

was a moderate-to-strong inverse correlation between plasma NfH

levels and grip strength at all time points examined, 65, 90, 105

and 120 days (Spearman’s rho (R) : NfHSMI34 v.s. GS: 20.583,

p,0.0001; NfHSMI35 v.s. GS: 20.335, p,0.0001; Fig. 2A & 2B).

No such correlation in plasma NfH levels and grip strength was

observed in WT mice at any age examined (data not shown).

Increased plasma NfH levels correlate with the decline in

isometric muscle force in hindlimb muscles of SOD1

mice. In order to obtain a more detailed assessment of the

relationship between plasma NfH levels and quantitative func-

tional markers of disease progression, an in vivo physiological

assessment of isometric muscle force in the hindlimb muscles of

SOD1 mice was undertaken. This physiological assessment of

isometric muscle force of specific muscles provides a more sensitive

and quantitative assessment of functional decline than grip

strength analysis, which can only detect general motor deficits in

SOD1 mice relatively late in the disease process, when many

motor neurons have already died. We have previously generated

similar physiological data in our lab in SOD1 mice at various

stages of disease ranging from early symptomatic (90 days) to end-

stage disease (130 days) [29,30,32]. We then examined whether

plasma NfH levels correlate with this profile of functional decline

in SOD1 mice.

Figure 1. Longitudinal assessment of plasma NfH levels in WT
and SOD1 mice. The graphs show the mean plasma level (ng/ml) of
A) NfHSMI34 and B) NfHSMI35 in SOD1 (circles; n = 19) and WT (squares;
n = 13) mice at 65 (pre-symptomatic), 90 (early symptomatic), 105 (late
symptomatic), and 120 (end stage) days of age. Error bars = S.E.M.
Friedman test was used for analysis of the pattern of plasma NfH levels
during disease progression, and Mann-Whitney Test was then used for
group comparison at each time point. **p = 0.002, ***p,0.0001.
doi:10.1371/journal.pone.0040998.g001

Figure 2. The correlation between grip strength and plasma
NfH levels in SOD1 mice during disease progression. The graphs
show the relationship between mean grip strength (g) and plasma NfH
phosphoform levels (ng/mL) in individual SOD1 mice (n = 16) at 65, 90,
105, and 120 days of age. A) There is a strong inverse correlation
between plasma NfHSMI34 levels and grip strength in SOD1 mice
(Spearman’s rho = 20.583, p,0.0001). The best-fit line (dashed line) is
shown. B) There is a moderate inverse correlation between plasma
NfHSMI35 and grip strength in SOD1 mice (Spearman’s rho = 20.335,
p,0.0001). The best-fit line (dashed line) is shown.
doi:10.1371/journal.pone.0040998.g002
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Typical examples of tetanic and twitch force traces from the TA

muscles of 105-day-old WT and SOD1 mice are shown in Fig. 3A.

The mean maximum twitch and tetanic force of the Tibialis

Anterior (TA) and Extensor Digitorum Longus (EDL) muscles of

WT and SOD1 at various stages of disease is summarised in

Fig. 3B and 3C, respectively, which shows the well established,

progressive decrease in muscle force in both TA and EDL muscles

that occurs in SOD1 mice as they age. The results also show that

in SOD1 mice, TA muscles were affected earlier in disease and to

a greater extent than EDL muscles. Thus, the maximum tetanic

force (Fig. 3C; mean6S.E.M.) in SOD1 TA was 56.765 g (n = 13)

at 90 days, 21.163 g (n = 16) at 105 days and 19.563.5 g (n = 12)

at 120 days. When expressed as a percentage of WT TA muscle

force in age-matched WT mice, the force produced by SOD1 TA

was 41.7% at 90 days, 15.3% at 105 days and 12% at 120 days

(p,0.0001 at each time point; Mann-Whitney test). The decline in

force in SOD1 EDL muscles occurred at a steadier, slower pace.

Thus, in SOD1 EDL muscles the force produced was 24.761.5 g

(n = 15) at 90 days, 15.761.6 g (n = 19) at 105 days and

13.761.0 g (n = 11) at 120 days, which was 68.6%, 43.9% and

33.3% of the force produced in WT EDL muscles at the respective

ages (p,0.01; ,0.0001; ,0.0001, respectively; Mann-Whitney

test). A similar pattern of decline was also found in the twitch

tension of TA and EDL muscles of SOD1 mice (Fig. 3B).

As shown in Fig. 3D, an exponential regression analysis of the

decline in maximum TA muscle force at 90, 105 and 120 days of

age (indicated by the respective arrows) and their corresponding

plasma NfHSMI34 (black squares) or NfHSMI35 (black triangles)

levels in SOD1 mice was undertaken. It can be seen that there is a

moderate-strong correlation between muscle force and plasma

NfH levels in SOD1 mice (R2 = 0.79 and 0.82 for NfHSMI34 and

NfHSMI35 respectively).

Increased plasma NfH levels correlate with motor unit

loss in SOD1 mice. Examples of typical motor unit traces from

the EDL muscle of 105-day-old SOD1 and WT mice are shown in

Fig. 4A. The number of functional motor units that survived in

EDL muscles was also determined in SOD1 mice at 90, 105 and

120 days of age and the results are summarised in Fig. 4B. In WT

mice, the number of motor units innervating EDL muscles

remained constant over the course of the study and the number of

motor units innervating EDL (mean6S.E.M.) was found to be

26.660.4 (n = 14) at 90 days, 30.860.4 (n = 10) at 105 days and

25.760.5 (n = 6) at 120 days. In contrast, in SOD1 mice, a

significant number of motor units had already died by 90 days,

with 22.761.2 (n = 17) motor units innervating EDL, a 15%

decline compared with WT (p,0.05). Between 90–105 days, there

was a 60% decrease in the number of motor units innervating

EDL muscles of SOD1 mice and only 12.660.5 (n = 15) motor

units innervated EDL (p,0.01). This decline in motor unit

survival in SOD1 mice plateaued at this level, so that by 120 days,

10.761.0 (n = 11; p,0.01) motor units innervated EDL.

Fig. 4C shows the results of an exponential regression analysis of

the decline in motor unit survival in EDL muscles at 90, 105 and

120 days (indicated by the respective arrows) and the correspond-

ing plasma NfHSMI34 (black squares) or NfHSMI35 (black triangles)

levels in SOD1 mice. Motor unit loss, expressed as a percentage of

motor unit survival in age matched WT mice, can be fitted into an

exponential regression with R2 = 0.70 for NfHSMI34 and R2 = 0.73

for NfHSMI35, indicating a modest correlation between the extent

of EDL motor unit loss and plasma NfH levels in SOD1 mice.

Increased plasma NfH levels directly correlate with the

extent of motor neuron death in the spinal cord of SOD1

mice. The defining disease characteristic in both ALS patients

and in mouse models is motor neuron degeneration. Therefore, in

order to determine if changes in plasma NfH levels in SOD1 mice

were a good reflection of the extent of motor neuron degeneration,

we next established the extent of motor neuron survival in the

lumbar spinal cord of WT and SOD1 mice at various stages of

disease. Examples of Nissl stained spinal cord sections, showing the

lumbar ventral horn of 105 day old WT and SOD1 mice are

shown in Fig. 5A. The results are summarised in Fig. 5B which

shows the mean motor neuron survival in 90, 105 and 120 day old

SOD1 mice expressed as a percentage of WT. It can be seen that

by 90 days, a significant number of motor neurons have already

died in SOD1 mice and only 60.861.4% of motor neurons survive

compared with WT littermates (p,0.01). Motor neurons continue

to die in SOD1 mice as disease progresses, so that by 105 days,

44.861.2% of motor neurons survive (p,0.01) and by 120 days

this is further reduced and only 29.061.3% of motor neurons

survive (p,0.01; Mann-Whitney test).

In order to establish whether the changes detected in plasma

NfH levels correlate with the extent of motor neuron degeneration

in SOD1 mice, an exponential regression analysis of motor neuron

survival and plasma NfH levels was undertaken. Figure 5C

summarises the results and shows the decline in motor neuron

survival in SOD1 mice at 90, 105 and 120 days of age (indicated

by the respective arrows) and corresponding plasma NfHSMI34

(black squares) or NfHSMI35 (black triangles) levels. It can be seen

that the decline in motor neuron survival observed in SOD1 mice

during disease progression fits into an exponential regression with

R2 = 0.99 for both NfHSMI34 and NfHSMI35 (p-value of coefficient:

0.03 and 0.006, respectively). This analysis shows that there is a

very strong correlation between the extent of motor neuron death

and plasma levels of both NfHSMI34 and NfHSMI35 in SOD1 mice.

Plasma NfH Levels Reflect the Disease-modifying Effects
of Arimoclomol in SOD1 Mice

Since plasma NfH levels appear to be a good reflection of the

decline in neuromuscular function in SOD1 mice, we next

examined whether plasma NfH levels could reflect the improve-

ments observed in SOD1 mice following treatment with a disease

modifying therapy. We therefore examined the effect of treatment

of SOD1 mice with arimoclomol, which we have previously shown

to significantly delay disease progression and extend the lifespan of

SOD1 mice [29,30]. Therefore, in this study a separate group of

SOD1 mice were treated with arimoclomol (10 mg/Kg; i.p;

SOD1+A) from 35 days and their plasma was collected at 65, 90,

105 and 120 days of age for analysis of NfH levels.

As can be seen in Fig. 6A, even at 65 days, a pre-symptomatic age,

the effects of arimoclomol were reflected in a reduction in the plasma

mean levels of NfHSMI34 in treated SOD1+A mice compared with

vehicle treated SOD1 littermates. Thus, at 65 days, the mean 6

S.E.M of plasma NfHSMI34 levels were 17.868.8 ng/mL in

SOD1+A mice compared with 46.2613.1 ng.mL in SOD1 mice

(Mann-Whitney test, p = 0.035). As disease progressed, plasma

NfHSMI34 levels continued to be lower in arimoclomol treated than

vehicle treated SOD1 mice. Thus, the mean 6 S.E.M NfHSMI34

levels in SOD1+A mice compared with SOD1 mice were

66.3623.7: 81.8615.8 (SOD1+A: SOD1) ng/mL at 90 days;

124.8618.8: 155.4619.3 ng/mL at 105 days and 231.7623.9:

328.4640.3 ng/mL at 120 days. However, the reduction in

NfHSMI34 level in symptomatic SOD1+A mice compared with

SOD1 mice only reached significance at 120 days (90 days

p = 0.154, Mann-Whitney test; 105 days, p = 0.264, t-test; 120 days,

p = 0.048, t-test; Fig. 6).

Similarly, plasma levels of NfHSMI35 were lower in SOD1+A

mice compared with SOD1 mice at all stages of the disease

(Fig. 6B). In contrast to NfHSMI34 levels, the assay for variably-
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phosphorylated NfH did not detect any significant effects of

arimoclomol at pre-symptomatic stages. However, levels of

NfHSMI35 in SOD1+A mice at 65 days of age were more

consistent between different animals and at a lower level than

observed in SOD1 mice, where there was a greater variation in

plasma NfHSMI35 levels. Thus, the mean6S.E.M levels of plasma

NfHSMI35 in SOD1+A and SOD1 mice (SODA: SOD) were

35.1610.3: 74.0620.8 ng/mL at 65 days; 55.4615.5:

68.8614.8 ng/mL at 90 days; 77.0610.1: 104.8617.0 ng/mL

at 105 days and 92.0615.5: 161.0621.5 ng/mL at 120 days

(Mann-Whitney test, p-values: 0.391; 0.327; ,0.001 and 0.009 at

65, 90, 105 and 120 days, respectively; Mann-Whitney test).

Furthermore, a comparison of the relative plasma levels of the

two NfH phosphoforms revealed that NfHSMI34 levels were

significantly lower in SOD1+A mice than SOD1 mice at 65 days

of age (Mann-Whitney test, p = 0.015). Furthermore, in SOD1+A

mice, levels of NfHSMI34 became greater than NfHSMI35 in general

in later stages, compared with SOD1 mice, and became significant

at 105 days (p = 0.04). Thus, the disease modifying effects of

arimoclomol in SOD1 mice were reflected in lower levels of both

NfH phosphoforms as well as a more even composition of plasma

NfH phosphoforms than in vehicle treated SOD1 mice.

The Reduction in Plasma NfH Levels Reflect the
Improvement in Muscle Force, Motor Unit and Motor
Neuron Survival in Arimoclomol Treated SOD1 Mice

In order to determine if changes in plasma NfH levels could be

used to detect the beneficial effects of arimoclomol, we first

established that arimoclomol did in fact improve disease progres-

sion in SOD1+A mice, as we have previously reported [29,30].

The results are shown in Table 1, which shows the mean muscle

force, motor unit survival and motor neuron survival in SOD1+A

mice and vehicle treated SOD1 littermates, at 105 and 120 days of

age. The results confirm that there is a significant improvement in

force, functional motor unit survival and the number of motor

neurons that survive in the sciatic motor pool in SOD1+A mice

compared with their vehicle treated SOD1 littermates, at both at a

symptomatic (105d) but more clearly at a late stage (120d) of

disease. These results also show that arimoclomol largely prevents

the decline in muscle function and motor neuron survival that

occurs in untreated SOD1 mice between 105 and 120 days of age.

Discussion

In this study, we have validated plasma NfH levels as a marker

of late stage disease progression and treatment response in an

animal model of ALS. Plasma is a readily available biological fluid

that is easy to sample in longitudinal studies of progressive

neurodegenerative disorders such as ALS. As shown in Fig 1, our

results show that plasma NfH levels increase significantly during

overall disease progression between 65–120 days in the

SOD1G93A mouse model of ALS (Friedman test: p,0.0001) and

that this increase in plasma NfH correlates with the loss of muscle

force, decline in motor unit survival and most significantly, with

the extent of motor neuron degeneration that occurs during later

stages of disease. Moreover, our results also show that plasma NfH

levels are a sensitive readout of late stage disease severity that can

reflect the effects of a disease modifying therapy. Thus, in SOD1

mice treated with arimoclomol, we not only observed a significant

delay in disease progression as previously reported [29,30],

reflected in an improvement in muscle force, motor unit and

motor neuron survival, but we also detected a reduction in plasma

NfH levels compared with vehicle treated age-matched SOD1

littermates. Arimolcomol is currently in a Phase II/III clinical trial

in ALS [31,33,34]. The findings of this study therefore may

represent an important step in the development of an easily

accessible, comprehensive marker for ALS that may have utility in

future clinical trials, particularly since patients are usually

diagnosed and recruited into trials well after the onset of

symptoms.

Although previous reports have suggested that NfH levels may

be a candidate biomarker for ALS and other progressive

neurodegenerative diseases including AD and PD [21,22,27,35],

most of these studies have examined CSF as the target biological

fluid. This approach necessitates the use of a relatively invasive

procedure i.e. lumbar puncture, which is not suitable for repeated

sampling in longitudinal assessment of disease progression in

individuals suffering from ALS. Analysis of plasma NfH is the

obvious solution to this problem, but this can be technically

challenging due to the so-called ‘‘hook effect’’. This is caused by

the tendency of neurofilaments to aggregate, resulting in masking

of its epitopes and consequently, lower and un-representative

yields in commonly used ELISA techniques [28]. The ‘‘hook

effect’’ has to date, therefore prevented the reliable measurement

of neurofilament levels in ALS and other diseases where NfH

aggregate formation occurs by standard immunoassay. In this

respect, the methodology used in this study to determine plasma

NfH levels is unique, in so far it is the first specifically devised to

overcome the ‘hook effect’ and, unlike previous methods, is

sensitive enough to even detect NfH in plasma of WT mice [28].

Although the anatomically defined blood-brain barrier (BBB)

and the functionally defined blood-CSF barrier (BCB) limit CNS-

to-blood transfer, molecules expressed in the CNS can still enter

the blood under both normal and pathological conditions. There is

growing evidence for impaired BBB/BCB integrity in both SOD1

mice and post-mortem spinal cord tissue of ALS patients [36]. It is

therefore not surprising that neurofilaments leak into the

circulation in both SOD1 mice and ALS patients. The method

we have recently developed [28] and used in this study was

sensitive enough to detect both hyperphosphorylated (NfHSMI34)

and variably-phosphorylated (NfHSMI35) forms of NfH in plasma

of WT animals at all ages studied. Although the two forms of NfH

were present in approximately equal amounts, the detection of

hyperphosphorylated NfH in the plasma of healthy WT mice

shows that the presence of hyperphosphorylated NfH in the

peripheral blood is not in itself indicative of pathology. Moreover,

since NfH has been detected in several pathological conditions [9],

its presence is not disease specific and it cannot therefore be used as a primary

diagnostic biomarker for neurodegenerative conditions such as ALS. However,

plasma NfH levels do not reflect the earlier stages of disease in

SOD1 mice, although we did observe a far larger variation in

Figure 3. The correlation between plasma NfH phosphoform levels and hindlimb muscle force in SOD1 mice during disease
progression. (A) Examples of recordings of maximum tetanic (arrow) and twitch (arrow head) tension in TA muscles of WT and vehicle treated SOD1
mice at 105 days of age. (B) The bar chart shows the mean maximum twitch tension (g) of TA (filled bars) and EDL (open bars) muscles. (C) The bar
chart shows the mean maximum tetanic tension (g) of TA (filled bars) and EDL (open bars) muscles. (D)The graph shows the percentage loss of TA
maximum tetanic tension, relative to WT, and the corresponding plasma NfHSMI34 (black squares) and NfHSMI35 (black triangles) levels in vehicle
treated SOD1 mice at each stage of disease (indicated by arrows). Exponential regression lines are shown for NfHSMI34 (thick black line) and NfHSMI35

(thin black line). Error bars = S.E.M. Mann-Whitney Test: *p,0.05; **p,0.01; ***p,0.0001.
doi:10.1371/journal.pone.0040998.g003
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Figure 4. The correlation between plasma NfH phosphoform levels and motor unit survival in EDL muscles in SOD1 mice during
disease progression. (A) Typical examples of motor unit traces in the EDL muscle of a WT and a vehicle treated SOD1 mouse at 105 days of age.
(B) The bar chart shows the mean motor unit survival (numbers) in EDL muscles of WT (open bars) and vehicle treated SOD1 (filled bars) mice. (C) The
percentage loss of EDL motor units, relative to WT, and plasma NfHSMI34 (black squares) and NfHSMI35 (black triangles) levels in SOD1 mice at each
stage of disease (indicated by arrows). Exponential regression lines are shown for NfHSMI34 (thick black line) and NfHSMI35 (thin black line). Error bars =
S.E.M. Mann-Whitney Test: *p,0.05; **p,0.01; ***p,0.0001.
doi:10.1371/journal.pone.0040998.g004
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Figure 5. The correlation between plasma NfH phosphoform levels and motor neuron survival in SOD1 mice during disease
progression. (A) The photomicrographs show cross-sections of the lumbar region at L5 level of spinal cords from a WT and a vehicle treated SOD1
mouse at 105 days of age stained for Nissl. The location of the sciatic motor pool is indicated within the broken circle. Magnificent: 5X. Scale
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plasma NfH levels than in WT mice, even prior to symptom onset

(65 days), when the NfH levels were not statistically different in

SOD1 and WT mice (Fig. 1). Plasma NfH levels increased

significantly in SOD1 mice between 105 to 120 days of age (Fig. 1).

The sensitivity and reliability of the method used in the present

study is highlighted by a comparison of our results with those of

previous reports investigating plasma NfH as a potential

biomarker of ALS. Thus, one study failed to detect any NfHs in

plasma from WT mice and reported NfH levels in end-stage

SOD1G93A mice on average below 75 ng/mL [37] and the other

study only detected NfH in plasma of end-stage SOD1G93A mice

at very low levels (on average, 8 ng/mL) [38]. In contrast, using

the method employed in the present study, plasma NfH levels can

be detected in WT mice at all ages studied, as well as in

presymptomatic and end-stage SOD1G93A mice, in which mean

NfH levels rise to as high as 318.11 ng/mL [28].

In addition to examining changes in plasma NfH levels in

SOD1G93A mice, we also compared the relative levels of the two

different NfH phosphoforms, NfHSMI35 and NfHSMI34. Our

results show that at 65 days of age, in both WT and SOD1 mice,

the plasma levels of NfHSMI35 and NfHSMI34 were similar to each

other. However, by 90 days, a clear change in the relative levels of

the two NfH phosphoforms was detected, with an increase in

NfHSMI34 levels and a decline in NfHSMI35. It is possible that this

change in the relative level of hyperphosphorylated NfH is a better

indicator of pathology than simply the presence of this phospho-

form per se. Thus, our results i) demonstrate the early involvement

of NfH in pathology in SOD1 mice, ii) reveal the true abundance

of NfH in the plasma of these mice and iii) suggest that an increase

in the ratio of hyperphosphorylated NfH: variably phosphorylated

NfH is indicative of pathology, at least in the SOD1G93A mouse

model of ALS.

In order to examine whether the increase in plasma NfH was a

good reflection of the decline in neuromuscular function that

occurs during disease progression in SOD1 mice, we performed a

correlation analysis of plasma NfH levels with longitudinal and

acute outcome measures. We found a strong-moderate inverse

correlation between plasma NfH levels (both NfHSMI34 and

NfHSMI35) and grip strength in SOD1 mice between 65–120 days

of age. Grip strength is a general functional test widely used to

evaluate motor function in mouse models [39–41]. However, grip

strength is an overall measure of neuromuscular function that

predominantly reflects the function of forelimb muscles, which are

affected relatively late in disease progression in SOD1 mice. We

therefore also correlated NfH levels with quantitative, reproduc-

ible physiological assessments of neuromuscular function in

hindlimbs. We observed a moderate-strong correlation in the

decline in muscle force (Fig. 3D) and increased plasma NfH and a

mild correlation between plasma NfH and EDL motor unit loss

(Fig. 4C) in SOD1 mice. The mild correlation between NfH levels

and motor unit survival is likely to be a reflection of the relatively

late involvement of the EDL muscle in disease in SOD1 mice

[30,32], so that motor unit loss in other muscles such as TA which

is affected earlier and to a greater extent than EDL, may correlate

better with NfH levels than EDL, but are technically more difficult

to accurately estimate. Thus, the extent of motor unit loss in any

individual muscle may not be a good measure of overall disease

progression. Among the most direct measures of disease progres-

sion in ALS is the extent of motor neuron survival. It has long been

thought that the loss of motor neurons in ALS is linear [42] and in

the present study, morphological assessment of motor neuron

survival at different ages reveals that motor neuron survival

declines linearly in SOD1 mice. More importantly, we found a

strong correlation between the extent of motor neuron degener-

ation and plasma NfH levels in SOD1 mice (Fig. 5C). These

results show that plasma NfH levels, at least detected by the

method described in this study, can be used to reflect the extent of

motor neuron degeneration. Thus, our data clearly shows that

longitudinal measurement of plasma NfH levels in SOD1 mice

reveals that plasma NfH levels increase as disease progresses,

particularly in later stages between 105–120 days which is also the

most critical period of disease progress in transgenic SOD1G93A

bar = 250 mm. (B) The bar chart shows the mean motor neuron survival in SOD1 mice expressed as a percentage of that in age-matched WT
littermates at various stages of disease. (C) The percentage motor neuron death in SOD1 mice and levels of plasma NfHSMI34 (black squares) and
NfHSMI35 (black triangles) at each disease stage (indicated by arrows). Exponential regression lines are shown for NfHSMI34 (thick black line) and
NfHSMI35 (thin black line). Error bars = S.E.M. Mann-Whitney Test: *p,0.05; **p,0.01; ***p,0.0001.
doi:10.1371/journal.pone.0040998.g005

Figure 6. Longitudinal assessment of plasma NfH levels in
arimoclomol treated SOD1 mice. The graphs show the mean
plasma level (ng/ml) of A) NfHSMI34 and B) NfHSMI35 in vehicle treated
SOD1 mice (circles; n = 19) and arimoclomol treated SOD1+A mice
(triangles; n = 19), at 65 (pre-symptomatic), 90 (early symptomatic), 105
(late symptomatic), and 120 (end stage) days of age. Error bars = S.E.M.
A t-test was performed for direct comparison of the levels of NfHSMI34 in
the two groups at 105 and 120 days, and a Mann-Whitney Test was
performed for the other time points as the data was not normally
distributed. Non-parametric analyses take the median value into
account more than the mean value in the statistical analysis. *p,0.05;
**p,0.01.
doi:10.1371/journal.pone.0040998.g006
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mice model, and this increase in NfH levels correlate with the

decline in muscle force and the death of motor neurons.

However, it should be noted that, there is likely to be a

significant delay between the time that the first physical

manifestations of disease occur (such as muscle denervation

[43]), and when these result in functional deficits (such as reduced

muscle force), and the appearance of Nfs in the peripheral blood.

Thus, when the timeline between muscle denervation, axonal

degeneration, formation of NfH-containing aggregates, MN death

and the eventual entry of NfH into peripheral blood is taken into

account, it is not surprising that there is a discrepancy in the time

between the detection of early physical manifestations of the

disease (90 days) and the first significant elevation in plasma NfH

levels (105 days). However, the invasive physiological and

morphological approaches used to determine the extent of disease

in SOD1 mice in this study, although very sensitive, quantitative

and accurate, are irreversible and not practical for longitudinal

follow-up in mice. Moreover, these measures might not be

clinically relevant for human as they may not reflect the state of

disease in patients when they first present to their physician with

symptoms. Therefore, the correlations we report between the

increases in plasma NfH levels and the decline in neuromuscular

function may provide a safe and easy measure for the evaluation of

later disease progression in ALS.

Furthermore, our results also show that plasma NfH levels

reflect the disease modifying effects of arimoclomol in SOD1 mice.

In confirmation of our previous findings [29,30], we found that

treatment with arimoclomol significantly delays the decline in

neuromuscular function and death of motor neurons in SOD1

mice (Table 1). Furthermore, plasma NfH levels were in general

lower in arimoclomol treated SOD1+A mice than vehicle treated

SOD1 littermates at all ages studied, but most significantly at later

stages of disease, from 105–120 days of age (Fig. 6). Hence, at

65 days, a pre-symptomatic age, plasma levels of NfHSMI34 were

significantly lower in arimoclomol-treated SOD1+A mice com-

pared with vehicle treated SOD1 littermates, possibly due to the

early beneficial effects of arimoclomol in the periphery, at the

neuromuscular junction (NMJ). Arimoclomol acts as a co-inducer

of the heat shock response, so that it only acts in cells under

conditions of cellular stress to augment the heat shock response

(HSR; [44]). Thus, although the neuroprotective effects of

arimoclomol in SOD1 mice only manifest later in the disease

when motor neurons are under considerable stress [29,30]), our

recent results indicate that its beneficial effects in the periphery

manifest earlier in the disease, prior to symptom onset. It has now

been established that the earliest physical manifestation of disease

in SOD1 mice occurs at the NMJ, where significant muscle

denervation occurs prior to any motor neuron death [43]. Our

recent work has shown that this early denervation is accompanied

by an increase in the HSR and correspondingly, in arimoclomol

treated SOD1 mice, this stress response is augmented, resulting in

a delay in muscle denervation [45]. Therefore, since the levels of

NfH remain steady in WT mice throughout the study, the

difference in plasma NfH levels observed in SOD1+A and SOD1

mice at 65 days of age is likely to be the result of Arimoclomol’s

early beneficial effects in the periphery and the maintenance of

neuromuscular contacts.

However, as shown in Fig. 6 and Table 1, the significant

improvement in muscle force, motor unit and motor neuron

survival observed from 105 days of age in arimoclomol treated

SOD1+A mice compared with their vehicle treated SOD1

littermates is reflected in a decrease in plasma NfH levels.

Although the significance of reduction of NfHSMI35 observed from

105 days was in line with the physiological improvement, the

reduction of NfHSMI34 became significantly reduced only at

120 days of age. However, further analysis of the levels of the two

NfH phosphoforms showed that the relative increase in the more

pathological plasma NfHSMI34 compared with NfHSMI35 occurred

significantly later in SOD1+A mice than SOD1 mice (data not

shown). It is likely that the difference in the timing of the effects of

arimoclomol treatment on NfHSMI35 and NfHSMI34 levels may be

related to their different levels of phosphorylation. Since the

stability of NfH increases with the degree of phosphorylation [10],

it will take longer for proteases to cleave hyperphosphorylated

NfH compared with variable-phosphorylated NfH. Because

neurofilament aggregates containing a large quantity of hyperpho-

sphorylated NfH are a hallmark of disease in SOD1 mice, it will

take longer for hyperphosphorylated NfH levels to decrease

following treatment with arimoclomol compared with variable-

phosphorylated NfH.

Taken together our results show that the late stage decline in

neuromuscular function and motor neuron survival in SOD1 mice

is correlated with an increase in plasma NfH phosphoform levels,

and furthermore, that plasma NfH phosphoform levels reflect the

improvement in disease phenotype induced by treatment with

arimoclomol. Plasma NfH phosphoform levels may therefore be a

useful marker to determine late stage disease progression in ALS

and that may eventually be used as a sensitive outcome measure in

clinical trials, particularly since ALS patients are likely to exhibit

significant disease symptoms by the time of enrolment. The

current outcome measures used in clinical trials are not

particularly sensitive to change over disease progression and

usually require a long period of observation, typically longer than

1 year. Even measurements that are capable of detecting the rapid

degeneration of motor neurons in ALS, such as MUNE [46], have

drawbacks, such as the need for specialist training, equipment and

complex statistical analysis, together with the lack of a gold

standard method, which prevents the widespread use of MUNE as

an outcome measure in ALS [47]. Moreover, as the results of this

study show, the selection of specific individual muscles for MUNE

may not always give an accurate reflection of the extent of disease

progression in other muscle groups variably affected by disease.

Accurate and sensitive assessment of plasma NfH phosphoform

levels may therefore provide a quick and easy readout of disease

Table 1. Arimoclomol delays disease progression in SOD1 mice.

Age (days) Group
Maximum TA Tetanic Force
(g ± sem) (n = muscle examined)

EDL MU survival (n ± sem)
(n = muscle examined)

MN survival (%WT) (n = sciatic
motor pool examined)

105 SOD1 SOD1+A 21.163.0 (16) 49.269.9 (11)** 12.660.5 (15) 14.860.5 (12)** 44.8 (10) 58.0 (10)**

120 SOD1 SOD1+A 19.563.5 (12) 36.969.0 (10)** 10.760.7 (11) 14.060.6 (10)** 29 (10) 65 (10)**

The Table shows the maximum TA tetanic force, EDL Motor Unit survival and Motor Neuron Survival in vehicle treated SOD1 and arimoclomol treated SOD1+A mice at
105 and 120 days of age. The results are the mean 6 sem. **p,0.01.
doi:10.1371/journal.pone.0040998.t001

Plasma Neurofilaments as Late Stage Markers in ALS

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e40998



progression in individual patient in future clinical trials. In

addition, plasma NfH levels may also serve as a safety biomarker

as a rapid increase in plasma NfH phosphoform levels following

administration of test drugs might indicate a detrimental treatment

effect [48]. The use of plasma NfH as an outcome measure may

therefore help to improve the safety of clinical trials by speeding up

the time taken to detect deleterious effects and by reducing the

time taken to complete these studies, hence reducing costs of Phase

III trials which account for 70% of costs of clinical drug

development in ALS [49]. Whether our findings in an animal

model of ALS can be translated to ALS patients will become clear

through further longitudinal investigation on cohorts of ALS

patients. If the results observed in this study in an animal model of

ALS are translated into patient samples, accurately measured

plasma NfH phosphoform levels may become a valuable

biomarker of disease progression, especially in later stages, for

the ALS community.

Materials and Methods

Experimental Animals
All animals were bred and maintained by Biological Services in

the UCL Institute of Neurology. The experiments described in this

study were carried out under licence from the UK Home Office

and following approval from the UCL Institute of Neurology’s

Ethical Review Panel. Transgenic mice expressing human

SOD1G93A mutant protein (TgN[SOD1-G93A]1Gur; Jackson

Laboratories, Bar Harbour) were maintained by breeding male

heterozygous carriers with female (C57BL/66 SJL) F1 hybrids.

The presence of the SOD1G93A mutation was confirmed by PCR

reaction from ear biopsies in all mice at the age of 3 weeks. In

order to obtain maximum blood sample volume of mice between

65–120 days of age whilst still complying UK Home Office

Regulations (Less than 15% of the blood volume should be

removed in any 30-day period, i.e. 10.5 ml/kg) [50], only male

mice were examined in this project.

Experimental Groups. Depending on Genotype, the Mice
were Randomly Assigned to One of 3 Groups

1) Transgenic mice carrying human SOD1G93A mutant

protein treated daily with arimoclomol (10 mg/Kg; i.p)

from 35 days of age (SOD1+A mice).

2) Transgenic mice carrying human SOD1G93A mutant

protein treated daily with vehicle (sterile saline; i.p) from

35 days of age (SOD1 mice).

3) Untreated wild type, age-matched littermates (WT mice).

4) Arimoclomol (kind gift of Biorex R&D Co., Hungary) was

dissolved in sterile saline (2 mg/ml) and the solution stored

at 4uC for a maximum of 1 week.

Longitudinal biomarker study. In the longitudinal study of

plasma NfH levels, arimoclomol treated SOD1 mice (SOD1+A;

n = 19), vehicle treated SOD1 mice (SOD1; n = 19) and untreated

wild-type (WT; n = 13) mice were repeatedly examined at various

stages of disease progression ranging from early symptomatic to

end-stage disease.

Plasma collection. Blood sampling was carried out in mice

from each experimental group at 65, 90, 105 and120 days of age,

representing pre-symptomatic, early-symptomatic, late-symptom-

atic and late stage disease. At 65, 90 and 105 days, the mice were

placed in a recovery chamber (Peco Service; V1200), set at

38.5uC, for 15 minutes and then transferred into a plastic tube

with the tail exposed. Blood was collected from the tail vein into an

EDTA-coated tube (BD MicrotainerH, K2E). At 120 days, blood

was collected by a cardiac puncture, under terminal anaesthesia

using pentobarbital. Each tube was then centrifuged at

14,000 rpm for 8 min. The plasma was collected and protease

inhibitor added (Sigma; v/v: 1/100). Each sample was then

aliquoted and stored at 280uC until further analysis. In total,

plasma samples collected from 19 SOD1 mice, 19 SOD1+A mice,

and 13 WT mice at each time point were used for further analysis

in this study.

Functional Assessments
Grip strength. In the same mice selected for plasma

collection, grip strength was determined prior to blood collection.

According to the manufacturer’s instruction (Bioseb, BIO-GS3),

mice were placed on a horizontal grid and pulled by the tail

against the direction of the force gauge until the animal released

the grid. An average of four readings was obtained at each

occasion.

Acute in vivo physiological assessment of neuromuscular

function and motor unit survival. In a separate set of mice,

functional analysis of hindlimb muscle function was undertaken at

105 days of age, corresponding to a late symptomatic stage of

disease. WT (muscle n = 10), SOD1 (muscle n = 12) and SOD1+A

(muscle n = 16) mice were deeply anesthetised (4.5% chloral

hydrate; 1 ml/100 g of body weight, i.p.) and prepared for in vivo

analysis of isometric muscle force (as described in Kalmar et al.,

2008 [30]). The distal tendons of the Tibialis Anterior (TA) and

Extensor Digitorum Longus (EDL) muscles in both hindlimbs

were dissected free and attached by silk thread to isometric force

transducers (Dynamometer UFI Devices, Welwyn Garden City,

UK). The sciatic nerve was exposed and sectioned. The length of

the muscles was adjusted for maximum twitch tension. The

muscles and nerve were kept moist with saline throughout the

recordings and all experiments were carried out at room

temperature. Isometric contractions were elicited by stimulating

the nerve to TA and EDL using square-wave pulses of 0.02 ms

duration at supra-maximal intensity, via silver wire electrodes.

Contractions were elicited by trains of stimuli at frequencies of 40,

80 and 100 Hz. The maximum tetanic tension was measured

using a computer and appropriate software (PicoScope).

The number of motor units innervating the EDL muscles was

also determined by stimulating the motor nerve with stimuli of

increasing intensity, resulting in stepwise increments in twitch

tension due to successive recruitment of motor axons with

increasing stimulus thresholds. The number of stepwise increments

was counted to give an estimate of the number of functional motor

units (MUNE) present in each muscle.

Morphological assessment of motor neuron

survival. Following physiological assessment of muscle function,

the mice (n = 5 per group) were terminally anaesthetised and

perfused transcardially with saline followed by fixative containing

4% paraformaldehyde (PFA). The spinal cords were then removed

and postfixed in 4% PFA and cryopreserved in 30% sucrose

overnight at 4uC. Transverse sections (20 mm) of the fixed lumbar

spinal cords (L3–L6) were cut on a freezing cryostat and collected

serially onto glass slides and subsequently stained for Nissl

(gallocyanin). Large polygonal neurons, with a minimum diameter

of 20 mm, within the sciatic motor pool, which had a clear

nucleolus and a distinct Nissl-dense cytoplasm were counted in

every 3rd section, in order to prevent counting the same neuron

twice in consecutive sections [51].
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NfH ELISA
We have recently developed a sensitive, reproducible method

for the detection of NfHs in plasma, which breaks-up NfH

aggregates, thereby allowing reliable quantification of plasma NfH

levels using ELISA [28]. In this ELISA, NfH levels in plasma from

mice in each experimental group were determined using mouse

monoclonal anti-NfH antibodies, SMI-34R and SMI-35R (Cov-

ance, USA) as the capture antibodies, rabbit polyclonal anti-

Neurofilament 200 (N4142; Sigma, UK) as the detector antibody,

and horseradish peroxidase (HRP)-labelled swine polyclonal anti-

rabbit antibody (P0217; DAKO, Denmark) as the reporter

antibody. NfH detected with the SMI-34R capture antibody is

labelled as NfHSMI34, while NfH detected with the SMI-35R

capture antibody is labelled as NfHSMI35. For a full description of

this 4-layer sandwich ELISA and the reagents used see [28].
Analytical procedure. The microtitre plates were coated

with 100 ml of capture antibodies, either SMI-34R or SMI-35R, in

0.05 M carbonate buffer, pH 9.5 (w/v, 2/10000), at 4uC
overnight. The plates were rinsed once in Barb2EDTA buffer

(13.1 g Sodium Barbitone, 2.1 g Barbital, 0.25 g EDTA) contain-

ing 0.05% Tween 20 and 0.1% BSA (wash solution) and then

blocked with 150 ml of Barb2EDTA buffer containing 1% BSA at

room temperature (RT) for 1 hour. Meanwhile, 5 mL of original

plasma was added to 35 mL of Barb2EDTA buffer containing

0.5 M urea and mixed well at RT for 1 hour. After 2 rinses with

wash solution, 95 ml of Barb2EDTA buffer containing 0.1% BSA

(sample diluent) was added into each well. Five microliters of

standard was added to standard wells, and sample wells were

loaded with 5 mL of the diluted urea-treated plasma. Quality

controls were also included, which consisted of pre-prepared NfH

samples of various concentrations. All samples, standards and

quality controls were loaded in duplicate. Plates were then

incubated for 1 hour (RT) on a shaker. After washing (365 mins),

100 ml of detector antibody (w/v. 10/10000 in sample diluent) was

added into each well and incubated for 1 hour on a shaker (RT).

Plates were then washed (365 mins) before 100 ml of reporter

antibody (w/v, 10/10000 in sample diluent) was loaded into each

well and incubated for 1 hour on a shaker (RT). After washing

(665 mins), 100 ml of TMB substrate was added into each well

and incubated for approximately 20 minutes in the dark on a

shaker (RT). The reaction was then stopped by adding 50 ml of

1 M HCl into each well. The absorbance was read immediately at

450 nm, with 750 nm as the reference wavelength, on an Omega

plate reader (Software version: 1.02; BMG LABTECH).

Data analysis. Measurements with a coefficient of variation

(CV) value higher than the assay limit (10%; [52]) were repeated.

Quality control samples were used throughout and absorbance

readouts from different microtitre plates were adjusted to the

quality control readout to allow comparison of results across

different plates.

Statistical Analysis
Statistical analysis was carried out using SPSS software (V17).

The normality of data was checked, using a Kolmogorov-Smirnov

test, to determine the approach of parametric or nonparametric

analysis. The repeated Friedman test was used for analysis of NfH

levels within groups in the longitudinal biomarker study. The

Mann-Whitney test or t-test, according to the normality of data,

was used for analysis of NfH levels between groups at each time

point (WT v.s. SOD1; SOD1 v.s. SOD1+A), and for analysis of

the levels of the two NfH phosphoforms in each group, at different

time points (NfHSMI34 v.s. NfHSMI35). Bivariate correlation

analysis, using Spearman’s correlation coefficient, was examined

for plasma NfH levels and grip strength. A minor, moderate and

strong correlation is considered if Spearman’s rho (R) is ,0.3, 0.3–

0.5,.0.5, respectively. Statistical significance was set at p,0.05.

Exponential analysis was used to determine the correlation of

plasma NfH levels and functional readouts in SOD1 mice at

various disease stages. A strong correlation was considered when

the coefficient of determination (R2) obtained from the exponential

analysis was greater than 0.8.

Acknowledgments

The authors would like to thank Dr V Bros for her support.

Author Contributions

Conceived and designed the experiments: AM AP BK LG. Performed the

experiments: CL JD. Analyzed the data: CL BK AP LG. Wrote the paper:

CL AP BK AM LG.

References

1. Miller RG, Mitchell JD, Lyon M, Moore DH (2007) Riluzole for amyotrophic

lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst

Rev: CD001447.

2. Zoing MC, Burke D, Pamphlett R, Kiernan MC (2006) Riluzole therapy for

motor neurone disease: an early Australian experience (1996–2002). J Clin

Neurosci 13: 78–83.

3. Carvalho MD, Swash M (2009) Awaji diagnostic algorithm increases sensitivity

of El Escorial criteria for ALS diagnosis. Amyotroph Lateral Scler 10: 53–57.

4. Ganesalingam J, Bowser R (2010) The application of biomarkers in clinical trials

for motor neuron disease. Biomark Med 4: 281–297.

5. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, et al. (1993)

Mutations in Cu/Zn superoxide dismutase gene are associated with familial

amyotrophic lateral sclerosis. Nature 362: 59–62.

6. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, et al. (1994) Motor

neuron degeneration in mice that express a human Cu,Zn superoxide dismutase

mutation. Science 264: 1772–1775.

7. Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010) The

neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci 31: 2247–2265.

8. Strong MJ, Kesavapany S, Pant HC (2005) The pathobiology of amyotrophic

lateral sclerosis: a proteinopathy? J Neuropathol Exp Neurol 64: 649–664.

9. Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of

neurofilament functions, and their possible contribution to neurodegeneration.

Mol Neurobiol 38: 27–65.

10. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal

injury, degeneration and loss. J Neurol Sci 233: 183–198.

11. Goldstein ME, Sternberger NH, Sternberger LA (1987) Phosphorylation

protects neurofilaments against proteolysis. J Neuroimmunol 14: 149–160.

12. Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, et al. (1999)
Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis.

Hum Mol Genet 8: 157–164.

13. Figlewicz DA, Krizus A, Martinoli MG, Meininger V, Dib M, et al. (1994)
Variants of the heavy neurofilament subunit are associated with the development

of amyotrophic lateral sclerosis. Hum Mol Genet 3: 1757–1761.

14. Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P (1988)
Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis.

J Neuropathol Exp Neurol 47: 642–653.

15. Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice

expressing the human neurofilament heavy gene: a mouse model of amyotrophic

lateral sclerosis. Cell 73: 35–46.

16. Xu Z, Cork LC, Griffin JW, Cleveland DW (1993) Increased expression of

neurofilament subunit NF-L produces morphological alterations that resemble
the pathology of human motor neuron disease. Cell 73: 23–33.

17. Lee MK, Marszalek JR, Cleveland DW (1994) A mutant neurofilament subunit

causes massive, selective motor neuron death: implications for the pathogenesis
of human motor neuron disease. Neuron 13: 975–988.

18. Sussmuth SD, Brettschneider J, Ludolph AC, Tumani H (2008) Biochemical

markers in CSF of ALS patients. Curr Med Chem 15: 1788–1801.

19. Otto M, Bowser R, Turner M, Berry J, Brettschneider J, et al. (2012) Roadmap

and standard operating procedures for biobanking and discovery of neuro-
chemical markers in ALS. Amyotroph Lateral Scler 13: 1–10.

20. Salzer J, Svenningsson A, Sundstrom P (2010) Neurofilament light as a

prognostic marker in multiple sclerosis. Mult Scler 16: 287–292.

21. de Jong D, Jansen RW, Pijnenburg YA, van Geel WJ, Borm GF, et al. (2007)

CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol

Neurosurg Psychiatry 78: 936–938.

Plasma Neurofilaments as Late Stage Markers in ALS

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e40998



22. Constantinescu R, Zetterberg H, Holmberg B, Rosengren L (2009) Levels of

brain related proteins in cerebrospinal fluid: an aid in the differential diagnosis of
parkinsonian disorders. Parkinsonism Relat Disord 15: 205–212.

23. Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H (2006)

Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology
66: 852–856.

24. Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C (1996)
Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases

have increased levels of neurofilament protein in CSF. J Neurochem 67: 2013–

2018.
25. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in

neurological diseases. Brain Res 987: 25–31.
26. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, et al. (2011) Combination

of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS.
J Neurochem 117: 528–537.

27. Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM (2007)

Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis:
impact of SOD1 genotype. Eur J Neurol 14: 1329–1333.

28. Lu CH, Kalmar B, Malaspina A, Greensmith L, Petzold A (2011) A method to
solubilise protein aggregates for immunoassay quantification which overcomes

the neurofilament ‘‘hook’’ effect. J Neurosci Methods 195: 143–150.

29. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, et al. (2004)
Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease

progression in ALS mice. Nat Med 10: 402–405.
30. Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, et al. (2008) Late

stage treatment with arimoclomol delays disease progression and prevents
protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107: 339–

350.

31. Phase II/III Randomized, Placebo-controlled Trial of Arimoclomol in SOD1
Positive Familial Amyotrophic Lateral Sclerosis. Available: http://clinicaltrials.

gov/ct2/show/NCT00706147. Accessed 2012 Jan 8.
32. Sharp PS, Dick JR, Greensmith L (2005) The effect of peripheral nerve injury on

disease progression in the SOD1(G93A) mouse model of amyotrophic lateral

sclerosis. Neuroscience 130: 897–910.
33. Cudkowicz ME, Shefner JM, Simpson E, Grasso D, Yu H, et al. (2008)

Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in
amyotrophic lateral sclerosis. Muscle Nerve 38: 837–844.

34. Lanka V, Wieland S, Barber J, Cudkowicz M (2009) Arimoclomol: a potential
therapy under development for ALS. Expert Opin Investig Drugs 18: 1907–

1918.

35. van Eijk JJ, van Everbroeck B, Abdo WF, Kremer BP, Verbeek MM (2010) CSF
neurofilament proteins levels are elevated in sporadic Creutzfeldt-Jakob disease.

J Alzheimers Dis 21: 569–576.
36. Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Louis MK,

Willing AE, et al. (2011) Amyotrophic lateral sclerosis: a neurovascular disease.

Brain Res 1398: 113–125.

37. Boylan K, Yang C, Crook J, Overstreet K, Heckman M, et al. (2009)

Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-

H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H

as a potential ALS biomarker. J Neurochem 111: 1182–1191.

38. Gnanapavan S, Grant D, Pryce G, Jackson S, Baker D, et al. (2012)

Neurofilament a biomarker of neurodegeneration in autoimmune encephalo-

myelitis. Autoimmunity Early online:1–6.

39. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, et al. (1997) Behavioral

and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for

comprehensive phenotype assessment. Mamm Genome 8: 711–713.

40. Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, et al. (2001) SHIRPA, a

protocol for behavioral assessment: validation for longitudinal study of

neurological dysfunction in mice. Neurosci Lett 306: 89–92.

41. Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron

57: 809–818.

42. Chio A, Logroscino G, Hardiman O, Swingler R, Mitchell D, et al. (2009)

Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler 10: 310–

323.

43. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, et al. (2004)

Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man.

Exp Neurol 185: 232–240.
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