37 research outputs found

    Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)

    Get PDF
    Two pumping tests were performed in the unconfined Motril-Salobreña detrital aquifer in a 250 m-deep well 300 m from the coastline containing both freshwater and saltwater. It is an artesian well as it is in the discharge zone of this coastal aquifer. The two observation wells where the drawdowns are measured record the influence of tidal fluctuations, and the well lithological columns reveal high vertical heterogeneity in the aquifer. The Theis and Cooper-Jacob approaches give average transmissivity (T) and storage coefficient (S) values of 1460 m2 /d and 0.027, respectively. Other analytical solutions, modified to be more accurate in the boundary conditions found in coastal aquifers, provide similar T values to those found with the Theis and Cooper-Jacob methods, but give very different S values or could not estimate them. Numerical modelling in a synthetic model was applied to analyse the sensitivity of the Theis and Cooper-Jacob approaches to the usual boundary conditions in coastal aquifers. The T and S values calculated from the numerical modelling drawdowns indicate that the regional flow, variable pumping flows, and tidal effect produce an error of under 10 % compared to results obtained with classic methods. Fluids of different density (freshwater and saltwater) cause an error of 20 % in estimating T and of over 100 % in calculating S. The factor most affecting T and S results in the pumping test interpretation is vertical heterogeneity in sediments, which can produce errors of over 100 % in both parameters.This research has been financed by Project CGL2012-32892 (Ministerio de Economía y Competitividad of Spain) and by the Research Group Sedimentary Geology and Groundwater (RNM-369) of the Junta de Andalucía

    Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease

    Get PDF
    Abstract: Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10−10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10−10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis

    Paleochannel groundwater discharge to the River Niger in the Iullemmeden Basin estimated by near- surface geophysics and piezometry

    No full text
    In drylands, groundwater is often the only perennial source of freshwater to sustain domestic water supplies and irrigation. Knowledge of the pathways and dynamics of groundwater discharge and recharge is, therefore, essential to inform sustainable and rational management of limited water resources. The lower valley of the Dallol Maouri in Niger represents a large fossil tributary (i.e. paleochannel) of the River Niger and drains groundwater regionally from the Iullemmeden Basin through coarse-grained Quaternary sediments. The objective of this paper is to quantify groundwater discharge within this paleochannel using piezometry and near-surface geophysics (TDEM: Time Domain Electromagnetics, MRS: Magnetic Resonance Sounding). TDEM and MRS experiments, conducted at 21 sites along 3 transects, show the thickness of the saturated Quaternary alluvium varies from 7 to 19 m with estimated effective porosities ranging from 18 to 38% and a hydraulic conductivity of 0.6–3 × 10–3 m/s. Dense piezometric surveys along drainage channel reveal hydraulic gradients of 0.2–0.3‰ that generate Darcy fluxes of 1000–2000 m3/day (dry season, i.e. minimum value). Paleochannel discharge, which currently provides baseflow to the River Niger, is the focus of local demand to increase access to water for drinking, livestock watering, and supplementary irrigation
    corecore