3,667 research outputs found

    Dynamic walking features and improved walking performance in multiple sclerosis patients treated with fampridine (4-aminopyridine)

    Get PDF
    Background: Impaired walking capacity is a frequent confinement in Multiple Sclerosis (MS). Patients are affected by limitations in coordination, walking speed and the distance they may cover. Also abnormal dynamic walking patterns have been reported, involving continuous deceleration over time. Fampridine (4-aminopyridine), a potassium channel blocker, may improve walking in MS. The objective of the current study was to comprehensively examine dynamic walking characteristics and improved walking capacity in MS patients treated with fampridine. Methods: A sample of N = 35 MS patients (EDSS median: 4) underwent an electronic walking examination prior to (Time 1), and during treatment with fampridine (Time 2). Patients walked back and forth a distance of 25 ft for a maximum period of 6 min (6-minute 25-foot-walk). Besides the total distance covered, average speed on the 25-foot distance and on turns was determined separately for each test minute, at Time 1 and Time 2. Results: Prior to fampridine administration, 27/35 patients (77 %) were able to complete the entire 6 min of walking, while following the administration, 34/35 patients (97 %) managed to walk for 6 min. In this context, walking distance considerably increased and treatment was associated with faster walking and turning across all six test minutes (range of effect sizes: partial eta squared = .34-.72). Importantly, previously reported deceleration across test minutes was consistently observable at Time 1 and Time 2. Discussion: Fampridine administration is associated with improved walking speed and endurance. Regardless of a treatment effect of fampridine, the previously identified, abnormal dynamic walking feature, i.e. the linear decline in walking speed, may represent a robust feature. Conclusions: The dynamic walking feature might hence be considered as a candidate for a new outcome measure in clinical studies involving interventions other than symptomatic treatment, such as immune-modulating medication. Trial registration: DRKS00009228 (German Clinical Trials Register). Date obtained: 25.08.2015

    The impact of heavy-quark loops on LHC dark matter searches

    Full text link
    If only tree-level processes are included in the analysis, LHC monojet searches give weak constraints on the dark matter-proton scattering cross section arising from the exchange of a new heavy scalar or pseudoscalar mediator with Yukawa-like couplings to quarks. In this letter we calculate the constraints on these interactions from the CMS 5.0/fb and ATLAS 4.7/fb searches for jets with missing energy including the effects of heavy-quark loops. We find that the inclusion of such contributions leads to a dramatic increase in the predicted cross section and therefore a significant improvement of the bounds from LHC searches.Comment: 12 pages, 1 table, 3 figures, v2: extended discussion and improved relic density calculation - matches published versio

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary

    Negative and positive selection of antigen-specific cytotoxic T lymphocytes affected by the α3 domain of MHC I molecules

    Get PDF
    THE α1 and α2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the α3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CDS. CDS is important in the selection of T cells as anti-CDS antibody injected into perinatal mice interfers with this process. We previously used a hybrid class I molecule with the α1/α2 domains from L^d and the α3 domain from Q7^b and showed that this molecule binds an L^d-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-L^d cytotoxic T lymphocytes. In addition, positive selection of virus-specific L^d-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the α1/α2 domains of class I, the α3 domain plays an important part in both positive and negative selection of antigen-specific cells

    Virtual screening for inhibitors of the human TSLP:TSLPR interaction

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathophysiology of various allergy disorders that are mediated by type 2 helper T cell (Th2) responses, such as asthma and atopic dermatitis. TSLP forms a ternary complex with the TSLP receptor (TSLPR) and the interleukin-7-receptor subunit alpha (IL-7Ra), thereby activating a signaling cascade that culminates in the release of pro-inflammatory mediators. In this study, we conducted an in silico characterization of the TSLP: TSLPR complex to investigate the drugability of this complex. Two commercially available fragment libraries were screened computationally for possible inhibitors and a selection of fragments was subsequently tested in vitro. The screening setup consisted of two orthogonal assays measuring TSLP binding to TSLPR: a BLI-based assay and a biochemical assay based on a TSLP: alkaline phosphatase fusion protein. Four fragments pertaining to diverse chemical classes were identified to reduce TSLP: TSLPR complex formation to less than 75% in millimolar concentrations. We have used unbiased molecular dynamics simulations to develop a Markov state model that characterized the binding pathway of the most interesting compound. This work provides a proof-ofprinciple for use of fragments in the inhibition of TSLP: TSLPR complexation

    Emergence of structural and dynamical properties of ecological mutualistic networks

    Full text link
    Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities. Such networks in ecology have generically evolved a nested architecture independent of species composition and latitude - specialists interact with proper subsets of the nodes with whom generalists interact. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.Comment: 10 pages, 4 figure

    Association of the OPRM1 A118G polymorphism and Pavlovian-to-instrumental transfer: Clinical relevance for alcohol dependence

    Full text link
    Background: Pavlovian-to-instrumental transfer (PIT) quantifies the extent to which a stimulus that has been associated with reward or punishment alters operant behaviour. In alcohol dependence (AD), the PIT effect serves as a paradigmatic model of cue-induced relapse. Preclinical studies have suggested a critical role of the opioid system in modulating Pavlovian–instrumental interactions. The A118G polymorphism of the OPRM1 gene affects opioid receptor availability and function. Furthermore, this polymorphism interacts with cue-induced approach behaviour and is a potential biomarker for pharmacological treatment response in AD. In this study, we tested whether the OPRM1 polymorphism is associated with the PIT effect and relapse in AD. Methods: Using a PIT task, we examined three independent samples: young healthy subjects ( N = 161), detoxified alcohol-dependent patients ( N = 186) and age-matched healthy controls ( N = 105). We used data from a larger study designed to assess the role of learning mechanisms in the development and maintenance of AD. Subjects were genotyped for the A118G (rs1799971) polymorphism of the OPRM1 gene. Relapse was assessed after three months. Results: In all three samples, participants with the minor OPRM1 G-Allele (G+ carriers) showed increased expression of the PIT effect in the absence of learning differences. Relapse was not associated with the OPRM1 polymorphism. Instead, G+ carriers displaying increased PIT effects were particularly prone to relapse. Conclusion: These results support a role for the opioid system in incentive salience motivation. Furthermore, they inform a mechanistic model of aberrant salience processing and are in line with the pharmacological potential of opioid receptor targets in the treatment of AD
    corecore