13 research outputs found

    The modulatory effects of prostaglandin-E on cytokine production by human peripheral blood mononuclear cells are independent of the prostaglandin subtype

    No full text
    The production of inflammatory mediators, relevant to (auto)immune diseases and chronic inflammatory conditions, can be modulated by dietary intake of n-3 and n-6 long chain polyunsaturated fatty acids (PUFAs). It was suggested that these effects are related to the formation of different series of eicosanoids, in particular prostaglandin-E (PGE). In this study we investigated whether prostaglandin subtypes metabolized from arachidonic acid (PGE(2)), dihomo-γ-linolenic acid (PGE(1)) or eicosapentaenoic acid (PGE(3)) have different effects on T-cell proliferation and cytokine production in vitro. Freshly isolated human peripheral blood mononuclear cells (PBMC) were stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the presence or absence of exogenous PGE(1), PGE(2) or PGE(3). We found that tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and to a lesser extent interleukin (IL)-10 production was inhibited by all PGE-subtypes in ConA-stimulated PBMC concomitant with unaffected IL-2 levels. The modulated cytokine production of ConA stimulated cells was independent of T-cell proliferation. PGE(2) and PGE(1) moderately stimulated proliferation, while PGE(3) inhibited the proliferative response to some extent. In LPS-stimulated PBMC, TNF-α production was inhibited by all PGE-subtypes, whereas IL-6 remained unaffected and IL-10 production was increased. Time course experiments on the effects of PGE-subtypes on cytokine production after ConA or LPS stimulation showed these effects to be time dependent, but indifferent of the prostaglandin subtype added. Overall, the modulatory effects of PGE on cytokine production were irrespective of the subtype. This may implicate that the immunomodulatory effects of PUFAs, with respect to cytokine production, are not caused by a shift in the subtype of PGE

    Histidine-Mediated pH-Sensitive Regulation of M-Ficolin:GlcNAc Binding in Innate Immunity Examined by Molecular Dynamics Simulations

    Get PDF
    Background: M-ficolin, a pathogen recognition molecule in the innate immune system, binds sugar residues including N-acetyl-D-glucosamine (GlcNAc), which is displayed on invading microbes and on apoptotic cells. The cis and trans Asp282-Cys283 peptide bond in the M-ficolin, which was found to occur at neutral and acidic pH in crystal structures, has been suggested to represent binding and non-binding activity, respectively. A detailed understanding of the pH-dependent conformational changes in M-ficolin and pH-mediated discrimination mechanism of GlcNAc-binding activity are crucial to both immune-surveillance and clearance of apoptotic cells. Methodology/Principal Findings: By immunodetection analysis, we found that the pH-sensitive binding of GlcNAc is regulated by a conformational equilibrium between the active and inactive states of M-ficolin. We performed constant pH molecular dynamics (MD) simulation at a series of pH values to explore the pH effect on the cis-trans isomerization of the Asp282-Cys283 peptide bond in the M-ficolin fibrinogen-like domain (FBG). Analysis of the hydrogen bond occupancy of wild type FBG compared with three His mutants (H251A, H284A and H297A) corroborates that His284 is indispensible for pH-dependent binding. H251A formed new but weaker hydrogen bonds with GlcNAc. His297, unlike the other two His mutants, is more dependent on the solution pH and also contributes to cis-trans isomerization of the Asp282-Cys283 peptide bond in weak basic solution. Conclusions/Significance: Constant pH MD simulation indicated that the cis active isomer of Asp282-Cys283 peptide bond was predominant around neutral pH while the trans bond gradually prevailed towards acidic environment. The protonation of His284 was found to be associated with the trans-to-cis isomerization of Asp282-Cys283 peptide bond which dominantly regulates the GlcNAc binding. Our MD simulation approach provides an insight into the pH-sensitive proteins and hence, ligand binding activity.Singapore-MIT Alliance (Computational and Systems Biology)Singapore. Ministry of Education (MoE, T208B3109
    corecore