10 research outputs found

    Thymic nurse cells in culture: morphological and antigenic characterization.

    No full text
    Epithelial monolayers were derived from thymic nurse cells (TNC), and were seeded onto collagen-coated dishes immediately after their isolation from young adult C3H-murine thymuses. Different media and supplements were tested in order to obtain cultures that were as pure as possible. Primary cultures were enriched in epithelial cells but always contained non-epithelial components among which fibroblasts predominated. Immunodetection of keratins, and repeated light- and electron-microscopic observations established the epithelial nature of the elongated cells derived from TNC; these elongated cells were cortical reticular cells, and were different from medullary globular cells that immediately adopted a mosaic pattern in vitro. At the beginning of the culture, the necrosis of cortical lymphocytes appeared to be toxic for epithelial cells; when epithelial cells survived, they showed a temporary lipid accumulation. After a 5-day culture, they still synthesized DNA but lost this capacity thereafter and dedifferentiated. The lympho-epithelial symbiosis appeared to be necessary to maintain some epithelial characteristics of the cultured cells, such as the clear vesicles and the expression of Ia antigens. In sub-cultures, the monolayers were almost purely epithelial in nature but growth was no longer observed. The cells remained reticular in shape, as they were in vivo, but their cytoplasm and their nucleus became larger and numerous cells were multinucleated. Confluence was not obtained with classical media even after mitogenic stimulation. The frequent observation of strongly keratinized areas suggested a process of terminal differentiation; this could not be avoided by using low serum concentration

    Biochemical and pharmacological role of A1adenosine receptors and their modulation as novel therapeutic strategy

    No full text
    Adenosine, the purine nucleoside, mediates its effects through activation of four G-protein coupled adenosine receptors (ARs) named as A1, A2A, A2Band A3. In particular, A1ARs are distributed through the body, primarily inhibitory in the regulation of adenylyl cyclase activity and able to reduce the cyclic AMP levels. Considerable advances have been made in the pharmacological and molecular characterization of A1ARs, which had been proposed as targets for the discovery and drug design of antagonists, agonists and allosteric enhancers. Several lines of evidence indicate that adenosine interacting with A1ARs may be an endogenous protective agent in the human body since it prevents the damage caused by various pathological conditions, such as in ischemia/hypoxia, epileptic seizures, excitotoxic neuronal injury and cardiac arrhythmias in cardiovascular system. It has also been reported that one of the most promising targets for the development of new anxiolytic drugs could be A1ARs, and that their activation may reduce pain signaling in the spinal cord. A1AR antagonists induce diuresis and natriuresis in various experimental models, mediating the inhibition of A1ARs in the proximal tubule which is primarily responsible for reabsorption and fluid uptake. In addition, the results of various studies indicate that adenosine is present within pancreatic islets and is implicated through A1ARs in the regulation of insulin secretion and in glucose concentrations. In the present paper it will become apparent that A1ARs could be implicated in the pharmacological treatment of several pathologies with an important influence on human health
    corecore