63 research outputs found

    Waveguide model of the hearing aid earmold system

    Get PDF
    BACKGROUND: The earmold system of the Behind-The-Ear hearing aid is an acoustic system that modifies the spectrum of the propagated sound waves. Improper selection of the earmold system may result in deterioration of sound quality and speech intelligibility. Computer modeling methods may be useful in the process of hearing aid fitting, allowing physician to examine various earmold system configurations and choose the optimum one for the hearing aid user. METHODS: In this paper, a computer model adequate for this task is proposed. This model is based on the waveguide modeling method. The waveguide model simulates the propagation of sound waves in the system of cylindrical tubes. Frequency response of the hearing aid receiver is simulated in the model and the influence of the ear canal and the eardrum on the earmold system is taken into account. The model parameters are easily calculated from parameters of a physical hearing aid system. Transfer function of the model is calculated and frequency response plots are obtained using the Matlab system. RESULTS: The frequency response plots of the earmold model were compared to the measurement plots of the corresponding physical earmold systems. The same changes in frequency responses caused by modification of length or diameter of a selected waveguide section, are observed in both measurement data of a real earmold system and in computed model responses. CONCLUSION: Comparison of model responses obtained for various sets of parameters with measurement data proved that the proposed model accurately simulates the real earmold system and the developed model may be used to construct a computer system assisting the physician who performs earmold system fitting

    Contribution of limbic norepinephrine to cannabinoid-induced aversion

    Get PDF
    RATIONALE: The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects. OBJECTIVES: In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats. METHODS: An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze. RESULTS: Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety. CONCLUSIONS: These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007)

    Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen

    Get PDF
    Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response.We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively.Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response

    Up-regulation of human inducible nitric oxide synthase by p300 transcriptional complex

    Get PDF
    p300, a ubiquitous transcription coactivator, plays an important role in gene activation. Our previous work demonstrated that human inducible nitric oxide synthase (hiNOS) expression can be highly induced with the cytokine mixture (CM) of TNF-α + IL-1β + IFN-γ. In this study, we investigated the functional role of p300 in the regulation of hiNOS gene expression. Our initial data showed that overexpression of p300 significantly increased the basal and cytokine-induced hiNOS promoter activities in A549 cells. Interestingly, p300 activated cytokine-induced hiNOS transcriptional activity was completely abrogated by deleting the upstream hiNOS enhancer at -5 kb to -6 kb in the promoter. Furthermore, p300 over-expression increased cytokine-induced transcriptional activity on a heterologous minimal TK promoter with the same hiNOS enhancer. Site-directed mutagenesis of the hiNOS AP-1 motifs revealed that an intact upstream (-5.3kb) AP-1 binding site was critical for p300 mediated cytokine-induced hiNOS transcription. Furthermore, our ChIP analysis demonstrated that p300 was binding to Jun D and Fra-2 proteins at -5.3 kb AP-1 binding site in vivo. Lastly, our 3C assay was able to detect a long DNA loop between the hiNOS enhancer and core promoter site, and ChIP loop assay confirmed that p300 binds to AP-1 and RNA pol II proteins. Overall, our results suggest that coactivator p300 mediates cytokine-induced hiNOS transactivation by forming a distant DNA loop between its enhancer and core promoter region

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
    • …
    corecore