49 research outputs found

    Digital twin of a MWh-scale grid battery system for efficiency and degradation analysis

    Get PDF
    Large-scale grid-connected lithium-ion batteries are increasingly being deployed to support renewable energy roll-out on the power grid. These battery systems consist of thousands of individual cells and various ancillary systems for monitoring and control. Although many studies have focused on the behaviour of single lithium-ion cells, the impact of system design choices and ancillary system controls on long-term degradation and efficiency of these systems, containing thousands of cells, has rarely been considered in detail. Here, we simulate a 1 MWh grid battery system consisting of 18,900 individual cells, each represented by a separate electrochemical model, as well as the thermal management system and power electronic converters. Simulations of the impact of cell-to-cell variability, thermal effects, and degradation effects were run for up to 10,000 cycles and 10 years. It is shown that electrical contact resistances and cell-to-cell variations in initial capacity and resistance have a smaller effect on performance than previously thought. Instead, the variation in degradation rate of individual cells dominates the system behaviour over the lifetime. The importance of careful thermal management system control is demonstrated, with proportional control improving overall efficiency by 5%-pts over on–off methods, also increasing the total usable energy of the battery by 5%-pts after 10 years

    Implications of the HIV testing protocol for refusal bias in seroprevalence surveys

    Get PDF
    BACKGROUND: HIV serosurveys have become important sources of HIV prevalence estimates, but these estimates may be biased because of refusals and other forms of non-response. We investigate the effect of the post-test counseling study protocol on bias due to the refusal to be tested. METHODS: Data come from a nine-month prospective study of hospital admissions in Addis Ababa during which patients were approached for an HIV test. Patients had the choice between three consent levels: testing and post-test counseling (including the return of HIV test results), testing without post-test counseling, and total refusal. For all patients, information was collected on basic sociodemographic background characteristics as well as admission diagnosis. The three consent levels are used to mimic refusal bias in serosurveys with different post-test counseling study protocols. We first investigate the covariates of consent for testing. Second, we quantify refusal bias in HIV prevalence estimates using Heckman regression models that account for sample selection. RESULTS: Refusal to be tested positively correlates with admission diagnosis (and thus HIV status), but the magnitude of refusal bias in HIV prevalence surveys depends on the study protocol. Bias is larger when post-test counseling and the return of HIV test results is a prerequisite of study participation (compared to a protocol where test results are not returned to study participants, or, where there is an explicit provision for respondents to forego post-test counseling). We also find that consent for testing increased following the introduction of antiretroviral therapy in Ethiopia. Other covariates of refusal are age (non-linear effect), gender (higher refusal rates in men), marital status (lowest refusal rates in singles), educational status (refusal rate increases with educational attainment), and counselor. CONCLUSION: The protocol for post-test counseling and the return of HIV test results to study participants is an important consideration in HIV prevalence surveys that wish to minimize refusal bias. The availability of ART is likely to reduce refusal rates

    Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression

    Get PDF
    Risk-taking behaviour is an important component of several psychiatric disorders, including attention-deficit hyperactivity disorder, schizophrenia and bipolar disorder. Previously, two genetic loci have been associated with self-reported risk taking and significant genetic overlap with psychiatric disorders was identified within a subsample of UK Biobank. Using the white British participants of the full UK Biobank cohort (n = 83,677 risk takers versus 244,662 controls) for our primary analysis, we conducted a genome-wide association study of self-reported risk-taking behaviour. In secondary analyses, we assessed sex-specific effects, trans-ethnic heterogeneity and genetic overlap with psychiatric traits. We also investigated the impact of risk-taking-associated SNPs on both gene expression and structural brain imaging. We identified 10 independent loci for risk-taking behaviour, of which eight were novel and two replicated previous findings. In addition, we found two further sex-specific risk-taking loci. There were strong positive genetic correlations between risk-taking and attention-deficit hyperactivity disorder, bipolar disorder and schizophrenia. Index genetic variants demonstrated effects generally consistent with the discovery analysis in individuals of non-British White, South Asian, African-Caribbean or mixed ethnicity. Polygenic risk scores comprising alleles associated with increased risk taking were associated with lower white matter integrity. Genotype-specific expression pattern analyses highlighted DPYSL5, CGREF1 and C15orf59 as plausible candidate genes. Overall, our findings substantially advance our understanding of the biology of risk-taking behaviour, including the possibility of sex-specific contributions, and reveal consistency across ethnicities. We further highlight several putative novel candidate genes, which may mediate these genetic effects

    Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries

    No full text
    The maximum energy that lithium-ion batteries can store decreases as they are used because of various irreversible degradation mechanisms. Many models of degradation have been proposed in the literature, sometimes with a small experimental data set for validation. However, a comprehensive comparison between different model predictions is lacking, making it difficult to select modelling approaches which can explain the degradation trends actually observed from data. Here, various degradation models from literature are implemented within a single particle model framework and their behavior is compared. It is shown that many different models can be fitted to a small experimental data set. The interactions between different models are simulated, showing how some of the models accelerate degradation in other models, altering the overall degradation trend. The effects of operating conditions on the various degradation models is simulated. This identifies which models are enhanced by which operating conditions and might therefore explain specific degradation trends observed in data. Finally, it is shown how a combination of different models is needed to capture different degradation trends observed in a large experimental data set. Vice versa, only a large data set enables to properly select the models which best explain the observed degradation

    Unlocking extra value from grid batteries using advanced models

    No full text
    Lithium-ion batteries are increasingly being deployed in liberalised electricity systems, where their use is driven by economic optimisation in a specific market context. However, battery degradation depends strongly on operational profile, and this is particularly variable in energy trading applications. Here, we present results from a year-long experiment where pairs of batteries were cycled with profiles calculated by solving an economic optimisation problem for wholesale energy trading, including a physically-motivated degradation model as a constraint. The results confirm the conclusions of previous simulations and show that this approach can increase revenue by 20% whilst simultaneously decreasing degradation by 30% compared to existing methods. Analysis of the data shows that conventional approaches cannot increase the number of cycles a battery can manage over its lifetime, but the physics-based approach increases the lifetime both in terms of years and number of cycles, as well as the revenue per year, increasing the possible lifetime revenue by 70%. Finally, the results demonstrate the economic impact of model inaccuracies, showing that the physics-based model can reduce the discrepancy in the overall business case from 170% to 13%. There is potential to unlock significant extra performance using control engineering incorporating physical models of battery ageing

    Detection and isolation of small faults in lithium-ion batteries via the asymptotic local approach

    No full text
    This contribution presents a diagnosis scheme for batteries to detect and isolate internal faults in the form of small parameter changes. This scheme is based on an electrochemical reduced-order model of the battery, which allows the inclusion of physically meaningful faults that might affect the battery performance. The sensitivity properties of the model are analyzed. The model is then used to compute residuals based on an unscented Kalman filter. Primary residuals and a limiting covariance matrix are obtained thanks to the local approach, allowing for fault detection and isolation by χ2 statistical tests. Results show that faults resulting in limited 0.15% capacity and 0.004% power fade can be effectively detected by the local approach. The algorithm is also able to correctly isolate faults related with sensitive parameters, whereas parameters with low sensitivity or linearly correlated are more difficult to precise

    An engineering perspective on model-based design of supervisors

    No full text
    \u3cp\u3eSeveral tools exist providing support for model-based design of supervisors in high-tech and cyber-physical systems. On the one hand, specifically tools based on finite automata are of interest as they allow to synthesize correct supervisors from which implementations can be generated. To cope with synthesis complexity, various decentralized synthesis techniques have been proposed. In recent years, extensions were defined to deal with automata and requirements in which variables may be used. On the other hand, as the synthesis result depends on the validity of the models used as its input, other model-based techniques such as simulation, testing, and verification provide complementary support in the design process. This is especially meaningful when dealing with synthesis of supervisors for large systems. In this paper, the design process is discussed with a focus on modeling, simulation, and synthesis. Additionally, the functionalities of the available synthesis tools are presented in relation to this process. To explain models relevant in this context, a container terminal scale system is used as a case study. This system consists of 35 components (mostly sensors and actuators) and 35 requirements. The design process is evaluated and missing functionality is identified.\u3c/p\u3

    Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    No full text
    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions
    corecore