34 research outputs found

    Hamartomas, teratomas and teratocarcinosarcomas of the head and neck: Report of 3 new cases with clinico-pathologic correlation, cytogenetic analysis, and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germ-cell tumors (GCT) are a histologically and biologically diverse group of neoplasms which primarily occur in the gonads but also develop at different extragonadal sites in the midline of the body. The head and neck region including the upper respiratory tract is a very rare location for such tumors in both children and adults, which can cause diagnostic and therapeutic difficulties.</p> <p>Methods</p> <p>We describe here two new cases of multilineage tumors including sinonasal teratocarcinosarcoma [SNTCS], and congenital oronasopharyngeal teratoma (epignathus) and compare their features with those of a new case of a rare salivary gland anlage tumor [SGAT], an entity for which the pathogenesis is unclear (i.e. hamartoma versus neoplasm). We correlate their presenting clinico-pathological features and compare histologic and cytogenetic features in an attempt to elucidate their pathogenesis and biologic potentials.</p> <p>Results and discussion</p> <p>Cytogenetic analysis revealed chromosomal abnormalities only in the case of SNTCS that showed trisomy 12 and 1p deletion. Both cytogenetic abnormalities are characteristically present in malignant germ cell tumors providing for the first time evidence that this rare tumor type indeed might represent a variant of a germ cell neoplasm. The SGAT and epignathus carried no such cytogenetic abnormalities, in keeping with their limited and benign biologic potential.</p> <p>Conclusion</p> <p>The comparison of these three cases should serve to emphasize the diversity of multilineage tumors (hamartomas and GCT) of the upper respiratory tract in regards to their biology, age of presentation and clinical outcomes. Malignant tumors of germ cell origins are more likely to affect adults with insidious symptom development, while benign tumors can nevertheless cause dramatic clinical symptoms which, under certain circumstances, can be fatal.</p

    The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels

    Get PDF
    In this review, we describe the background and implications of our recent discovery that two-pore channels (TPCs) comprise a novel class of calcium release channels gated by the intracellular messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Their localisation to the endolysosomal system highlights a new function for these organelles as targets for NAADP-mediated Ca(2+) mobilisation. In addition, we describe how TPCs may also trigger further Ca(2+) release by coupling to the endoplasmic reticular stores through activation of IP(3) receptors and ryanodine receptors

    OVERREPRESENTATION OF CHROMOSOME 12P SEQUENCES AND KARYOTYPIC EVOLUTION IN I(12P)-NEGATIVE TESTICULAR GERM-CELL TUMORS REVEALED BY FLUORESCENCE IN-SITU HYBRIDIZATION

    No full text
    Human testicular germ-cell tumors (TGCTs) comprise a heterogeneous group of solid neoplasms. These tumors are characterized by the presence of a highly specific chromosomal abnormality, i.e., an isochromosome of the short arm of chromosome 12. At present, this i(12p) chromosome is found in more than 80% of TGCTs. Isochromosome 12p has also been observed in some ovarian and extragonadal germ cell tumors. In the remaining so-called i(12p)-negative TGCTs other abnormalities involving chromosome 12, mainly 12p, can be found. In order to establish whether 12p abnormalities other than i(12p) are a common phenomenon in TGCTs, a panel of 11 i(12p)-negative tumors was investigated using multicolorfluorescence in situ hybridization. All TGCTs examined appeared to contain chromosomal abnormalities involving 12p, resulting in a distinct overrepresentation of short arm sequences. In addition, indications were obtained for a clonal evolution in one of the tumors. Our data suggest that the occurrence of 12p abnormalities is a common phenomenon in i(12p)-negative TGCTs and that these abnormalities, analogous to i(12p), may contribute to the process of tumor development

    OVERREPRESENTATION OF CHROMOSOME 12P SEQUENCES AND KARYOTYPIC EVOLUTION IN I(12P)-NEGATIVE TESTICULAR GERM-CELL TUMORS REVEALED BY FLUORESCENCE IN-SITU HYBRIDIZATION

    No full text
    Human testicular germ-cell tumors (TGCTs) comprise a heterogeneous group of solid neoplasms. These tumors are characterized by the presence of a highly specific chromosomal abnormality, i.e., an isochromosome of the short arm of chromosome 12. At present, this i(12p) chromosome is found in more than 80% of TGCTs. Isochromosome 12p has also been observed in some ovarian and extragonadal germ cell tumors. In the remaining so-called i(12p)-negative TGCTs other abnormalities involving chromosome 12, mainly 12p, can be found. In order to establish whether 12p abnormalities other than i(12p) are a common phenomenon in TGCTs, a panel of 11 i(12p)-negative tumors was investigated using multicolorfluorescence in situ hybridization. All TGCTs examined appeared to contain chromosomal abnormalities involving 12p, resulting in a distinct overrepresentation of short arm sequences. In addition, indications were obtained for a clonal evolution in one of the tumors. Our data suggest that the occurrence of 12p abnormalities is a common phenomenon in i(12p)-negative TGCTs and that these abnormalities, analogous to i(12p), may contribute to the process of tumor development

    Reduced fertilization after ICSI and abnormal phospholipase C zeta presence in spermatozoa from the wobbler mouse.

    No full text
    Failed fertilization after intracytoplasmic sperm injection (ICSI) can be due to a reduced oocyte-activation capacity caused by reduced concentrations and abnormal localization of the oocyte-activation factor phospholipase C (PLC) zeta. Patients with this condition can be helped to conceive by artificial activation of oocytes after ICSI with calcium ionophore (assisted oocyte activation; AOA). However some concern still exists about this approach. Mouse models could help to identify potential oocyte-activation strategies and evaluate their safety. In this study, the fertilizing capacity of wobbler sperm cells was tested and the efficiency of AOA with two exposures to ionomycin to restore fertilization and embryo development was studied. The quality of the obtained blastocysts was assessed and embryo transfer was performed to evaluate post-implantation development. The presence of PLCzeta in the spermatozoa and testis of the wobbler mouse was evaluated by PLCzeta immunostaining and quantitative reverse-transcription polymerase chain reaction. Sperm cells from wobbler mice had reduced fertilizing capacity and abnormalities in PLCzeta localization, but not in its expression. Artificially activating the oocytes restored fertilization and embryo development. Therefore, the wobbler mouse can be a model for failed fertilization after ICSI to study PLCzeta dynamics and aid in optimization of the AOA method

    NAADP mobilizes calcium from acidic organelles through two-pore channels

    Get PDF
    Ca2+ mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP3), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP3 and cyclic ADP ribose cause the release of Ca2+ from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP3 and ryanodine receptors (InsP3Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca2+ from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca2+ release from lysosome-related stores that is subsequently amplified by Ca2+-induced Ca2+ release by InsP3Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca2+ stores or by blocking InsP3Rs. Thus, TPCs form NAADP receptors that release Ca2+ from acidic organelles, which can trigger further Ca2+ signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca2+ signals in animal cells, and will advance our understanding of the physiological role of NAADP
    corecore