66,163 research outputs found
Recommended from our members
Polaronic effect in the x-ray absorption spectra of La1-x Ca x MnO3 manganites.
X-ray absorption spectroscopy (XAS) is performed to study changes in the electronic structures of colossal magnetoresistance (CMR) and charged ordered (CO) La1-x Ca x MnO3 manganites with respect to temperature. The pre-edge features in O and Mn K-edge XAS spectra, which are highly sensitive to the local distortion of MnO6 octahedral, exhibit contrasting temperature dependence between CMR and CO samples. The seemingly counter-intuitive XAS temperature dependence can be reconciled in the context of polarons. These results help identify the most relevant orbital states associated with polarons and highlight the crucial role played by polarons in understanding the electronic structures of manganites
Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
Incremental learning (IL) has received a lot of attention recently, however,
the literature lacks a precise problem definition, proper evaluation settings,
and metrics tailored specifically for the IL problem. One of the main
objectives of this work is to fill these gaps so as to provide a common ground
for better understanding of IL. The main challenge for an IL algorithm is to
update the classifier whilst preserving existing knowledge. We observe that, in
addition to forgetting, a known issue while preserving knowledge, IL also
suffers from a problem we call intransigence, inability of a model to update
its knowledge. We introduce two metrics to quantify forgetting and
intransigence that allow us to understand, analyse, and gain better insights
into the behaviour of IL algorithms. We present RWalk, a generalization of
EWC++ (our efficient version of EWC [Kirkpatrick2016EWC]) and Path Integral
[Zenke2017Continual] with a theoretically grounded KL-divergence based
perspective. We provide a thorough analysis of various IL algorithms on MNIST
and CIFAR-100 datasets. In these experiments, RWalk obtains superior results in
terms of accuracy, and also provides a better trade-off between forgetting and
intransigence
Recommended from our members
EEG findings of reduced neural synchronization during visual integration in schizophrenia
Schizophrenia patients exhibit well-documented visual processing deficits. One area of disruption is visual integration, the ability to form global objects from local elements. However, most studies of visual integration in schizophrenia have been conducted in the context of an active attention task, which may influence the findings. In this study we examined visual integration using electroencephalography (EEG) in a passive task to elucidate neural mechanisms associated with poor visual integration. Forty-six schizophrenia patients and 30 healthy controls had EEG recorded while passively viewing figures comprised of real, illusory, or no contours. We examined visual P100, N100, and P200 event-related potential (ERP) components, as well as neural synchronization in the gamma (30-60 Hz) band assessed by the EEG phase locking factor (PLF). The N100 was significantly larger to illusory vs. no contour, and illusory vs. real contour stimuli while the P200 was larger only to real vs. illusory stimuli; there were no significant interactions with group. Compared to controls, patients failed to show increased phase locking to illusory versus no contours between 40-60 Hz. Also, controls, but not patients, had larger PLF between 30-40 Hz when viewing real vs. illusory contours. Finally, the positive symptom factor of the BPRS was negatively correlated with PLF values between 40-60 Hz to illusory stimuli, and with PLF between 30-40 Hz to real contour stimuli. These results suggest that the pattern of results across visual processing conditions is similar in patients and controls. However, patients have deficits in neural synchronization in the gamma range during basic processing of illusory contours when attentional demand is limited
Recommended from our members
Distributions of brominated organic compounds in the troposphere and lower stratosphere
A comprehensive suite of brominated organic compounds was measured from whole air samples collected during the 1996 NASA Stratospheric Tracers of Atmospheric Transport aircraft campaign and the 1996 NASA Global Tropospheric Experiment Pacific Exploratory Mission-Tropics aircraft campaign. Measurements of individual species and total organic bromine were utilized to describe latitudinal and vertical distributions in the troposphere and lower stratosphere, fractional contributions to total organic bromine by individual species, fractional dissociation of the long-lived species relative to CFC-11, and the Ozone Depletion Potential of the halons and CH3Br. Spatial differences in the various organic brominated compounds were related to their respective sources and chemical lifetimes. The difference between tropospheric mixing ratios in the Northern and Southern Hemispheres for halons was approximately equivalent to their annual tropospheric growth rates, while the interhemispheric ratio of CH3Br was 1.18. The shorter-lived brominated organic species showed larger tropospheric mixing ratios in the tropics relative to midlatitudes, which may reflect marine biogenic sources. Significant vertical gradients in the troposphere were observed for the short-lived species with upper troposphere values 40-70% of the lower troposphere values. Much smaller vertical gradients (3-14%) were observed for CH3Br, and no significant vertical gradients were observed for the halons. Above the tropopause, the decrease in organic bromine compounds was found to have some seasonal and latitudinal differences. The combined losses of the individual compounds resulted in a loss of total organic bromine between the tropopause and 20 km of 38-40% in the tropics and 75-85% in midlatitudes. The fractional dissociation of the halons and CH3Br relative to CFC-11 showed latitudinal differences, with larger values in the tropics. Copyright 1999 by the American Geophysical Union
Monoclonal antibody against cadherin-17 as a potential treatment for liver cancer
This journal suppl. entitled: Abstracts of The International Liver Congress™ 2012 – 47th annual meeting of the European Association for the Study of the Liver / Poster AbstractsBACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a major type of liver cancer associated with high mortality. Prognosis is poor in HCC patients largely because of late diagnosis and limitations in treatment options. Therefore, this study aims to identify alternative target for HCC in hope to offer new treatments to patients. Cadherin-17 (CDH17) has been identified as an oncofetal molecule of HCC and that a suppression of its expression by RNA interference (RNAi) leads to anti-tumorigenesis. To supplement the drawbacks associated with the use of RNAi approach in biotherapy, we developed specific antibody against CDH17 for achieving similar purpose. METHODS: Hybridoma cell clones capable of secreting antibodies ...postprin
- …