2,232 research outputs found

    ALLOY BROADENING OF THE NEAR-GAP LUMINESCENCE AND THE NATURAL BAND OFFSET IN SEMICONDUCTOR ALLOYS

    Get PDF
    The inhomogeneous broadening of the near-gap emission (bound excitons (BE) and conduction-band to acceptor (CA)) in semiconductor alloys is reanalysed using the Markoff statistical theory for fluctuations of alloy composition. We give the exact relationship between the linewidth and the Bohr radius of the bound particle. The results of our theory indicate that even in the best GaAlAs samples there is still a significant contribution from other broadening mechanisms. We also show that the linewidth ratio of the CA to BE emission lines may provide a good estimate of the natural band offset in the alloy

    Coherent quantum state storage and transfer between two phase qubits via a resonant cavity

    Full text link
    A network of quantum-mechanical systems showing long lived phase coherence of its quantum states could be used for processing quantum information. As with classical information processing, a quantum processor requires information bits (qubits) that can be independently addressed and read out, long-term memory elements to store arbitrary quantum states, and the ability to transfer quantum information through a coherent communication bus accessible to a large number of qubits. Superconducting qubits made with scalable microfabrication techniques are a promising candidate for the realization of a large scale quantum information processor. Although these systems have successfully passed tests of coherent coupling for up to four qubits, communication of individual quantum states between qubits via a quantum bus has not yet been demonstrated. Here, we perform an experiment demonstrating the ability to coherently transfer quantum states between two superconducting Josephson phase qubits through a rudimentary quantum bus formed by a single, on chip, superconducting transmission line resonant cavity of length 7 mm. After preparing an initial quantum state with the first qubit, this quantum information is transferred and stored as a nonclassical photon state of the resonant cavity, then retrieved at a later time by the second qubit connected to the opposite end of the cavity. Beyond simple communication, these results suggest that a high quality factor superconducting cavity could also function as a long term memory element. The basic architecture presented here is scalable, offering the possibility for the coherent communication between a large number of superconducting qubits.Comment: 17 pages, 4 figures (to appear in Nature

    Is a soft tissue graft harvested from the maxillary tuberosity the approach of choice in an isolated site?

    Full text link
    Soft tissue augmentation procedures are becoming more popular these days. Different soft tissue graft harvesting approaches have been proposed. Nonetheless, the location of the donor site (whether anterior-, lateral-, superficial-, deep-palate or the maxillary tuberosity) can affect the graft shape and its composition. Soft tissue grafts from the maxillary tuberosity are rich in connective tissue fibers, with minimal presence of fatty or glandular components. Clinical, histological, and molecular evidence shows that a soft tissue graft obtained from the maxillary tuberosity has unique properties. In addition, harvesting from this area presents minimal risk for intra- or postoperative complications, leading to reduced patient morbidity. The aim of this commentary is to discuss the advantages and disadvantages of harvesting a soft tissue graft from the tuberosity and to compare it with the traditional palatal graft, while highlighting functional, esthetic, and patient-related outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151301/1/jper10300_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151301/2/jper10300.pd

    Phase I study of TP300 in patients with advanced solid tumors with pharmacokinetic, pharmacogenetic and pharmacodynamic analyses

    Get PDF
    Background: A Phase I dose escalation first in man study assessed maximum tolerated dose (MTD), dose-limiting toxicity (DLT) and recommended Phase II dose of TP300, a water soluble prodrug of the Topo-1 inhibitor TP3076, and active metabolite, TP3011. <p/>Methods: Eligible patients with refractory advanced solid tumors, adequate performance status, haematologic, renal, and hepatic function. TP300 was given as a 1-hour i.v. infusion 3-weekly and pharmacokinetic (PK) profiles of TP300, TP3076 and TP3011 were analysed. Polymorphisms in CYP2D6, AOX1 and UGT1A1 were studied and DNA strand-breaks measured in peripheral blood mononuclear cells (PBMCs). <p/>Results: 32 patients received TP300 at 1, 2, 4, 6, 8, 10, 12 mg/m2. MTD was 10 mg/m2; DLTs at 12 (2/4 patients) and 10 mg/m2 (3/12) included thrombocytopenia and febrile neutropenia; diarrhea was uncommon. Six patients (five had received irinotecan), had stable disease for 1.5-5 months. TP3076 showed dose proportionality in AUC and Cmax from 1--10 mg/m2. Genetic polymorphisms had no apparent influence on exposure. DNA strand-breaks were detected after TP300 infusion. <p/>Conclusions: TP300 had predictable hematologic toxicity, and diarrhea was uncommon. AUC at MTD is substantially greater than for SN38. TP3076 and TP3011 are equi-potent with SN38, suggesting a PK advantage

    The Spin of Holographic Electrons at Nonzero Density and Temperature

    Full text link
    We study the Green's function of a gauge invariant fermionic operator in a strongly coupled field theory at nonzero temperature and density using a dual gravity description. The gravity model contains a charged black hole in four dimensional anti-de Sitter space and probe charged fermions. In particular, we consider the effects of the spin of these probe fermions on the properties of the Green's function. There exists a spin-orbit coupling between the spin of an electron and the electric field of a Reissner-Nordstrom black hole. On the field theory side, this coupling leads to a Rashba like dispersion relation. We also study the effects of spin on the damping term in the dispersion relation by considering how the spin affects the placement of the fermionic quasinormal modes in the complex frequency plane in a WKB limit. An appendix contains some exact solutions of the Dirac equation in terms of Heun polynomials.Comment: 27 pages, 11 figures; v2: minor changes, published versio

    Observation of the thermal Casimir force

    Full text link
    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 μ\mum and 7 μ\mum. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental results are in excellent agreement (reduced χ2\chi^2 of 1.04) with the Casimir force calculated using the Drude model, including the T=300 K thermal force, which dominates over the quantum fluctuation-induced force at separations greater than 3 μ\mum. The plasma model result is excluded in the measured separation range.Comment: 6 page

    Compensated right ventricular function of the onset of pulmonary hypertension in a rat model depends on chamber remodeling and contractile augmentation.

    Get PDF
    Right-ventricular function is a good indicator of pulmonary arterial hypertension (PAH) prognosis; however, how the right ventricle (RV) adapts to the pressure overload is not well understood. Here, we aimed at characterizing the time course of RV early remodeling and discriminate the contribution of ventricular geometric remodeling and intrinsic changes in myocardial mechanical properties in a monocrotaline (MCT) animal model. In a longitudinal study of PAH, ventricular morphology and function were assessed weekly during the first four weeks after MCT exposure. Using invasive measurements of RV pressure and volume, heart performance was evaluated at end of systole and diastole to quantify contractility (end-systolic elastance) and chamber stiffness (end-diastolic elastance). To distinguish between morphological and intrinsic mechanisms, a computational model of the RV was developed and used to determine the level of prediction when accounting for wall masses and unloaded volume measurements changes. By four weeks, mean pulmonary arterial pressure and elastance rose significantly. RV pressures rose significantly after the second week accompanied by significant RV hypertrophy, but RV stroke volume and cardiac output were maintained. The model analysis suggested that, after two weeks, this compensation was only possible due to a significant increase in the intrinsic inotropy of RV myocardium. We conclude that this MCT-PAH rat is a model of RV compensation during the first month after treatment, where geometric remodeling on EDPVR and increased myocardial contractility on ESPVR are the major mechanisms by which stroke volume is preserved in the setting of elevated pulmonary arterial pressure. The mediators of this compensation might themselves promote longer-term adverse remodeling and decompensation in this animal model

    Radioactivities in Population Studies: 26Al and 60Fe from OB Associations

    Full text link
    The observation of the interstellar 1.809 MeV decay-line of radioactive 26Al by the imaging gamma-ray telescope COMPTEL have let to the conclusion, that massive stars and their subsequent core-collapse supernovae are the dominant sources of the interstellar 26Al abundance. Massive stars are known to affect the surrounding interstellar medium by their energetic stellar winds and by the emission of ionising radiation. We present a population synthesis model allowing the correlated investigation of the gamma-ray emission characteristics with integrated matter, kinetic energy and extreme ultra-violet radiation emission of associations of massive stars. We study the time evolution of the various observables. In addition, we discuss systematic as well as statistical uncertainties affecting the model. Beside uncertainties in the input stellar physics such as stellar rotation, mass loss rates or internal mixing modifications due to a unknown binary component may lead to significant uncertainties.Comment: 10 pages, 7 figures, to appear in Proc. "Influence of Binaries on Stellar Population Studies", eds. Vanbeveren & Van Rensbergen, Brussels, Aug. 200

    Borderline gestational diabetes mellitus and pregnancy outcomes

    Get PDF
    Background: The impact of borderline gestational diabetes mellitus (BGDM), defined as a positive oral glucose challenge test (OGCT) and normal oral glucose tolerance test (OGTT), on maternal and infant health is unclear. We assessed maternal and infant health outcomes in women with BGDM and compared these to women who had a normal OGCT screen for gestational diabetes. Methods: We compared demographic, obstetric and neonatal outcomes between women participating in the Australian Collaborative Trial of Supplements with antioxidants Vitamin C and Vitamin E to pregnant women for the prevention of pre-eclampsia (ACTS) who had BGDM and who screened negative on OGCT. Results: Women who had BGDM were older (mean difference 1.3 years, [95% confidence interval (CI) 0.3, 2.2], p = 0.01) and more likely to be obese (27.1% vs 14.1%, relative risk (RR) 1.92, [95% CI 1.41, 2.62], p < 0.0001) than women who screened negative on OGCT. The risk of adverse maternal outcome overall was higher (12.9% vs 8.1%, RR 1.59, [95% CI 1.00, 2.52], p = 0.05) in women with BGDM compared with women with a normal OGCT. Women with BGDM were more likely to develop pregnancy induced hypertension (17.9% vs 11.8%, RR 1.51, [95% CI 1.03, 2.20], p = 0.03), have a caesarean for fetal distress (17.1% vs 10.5%, RR 1.63, [95% CI 1.10, 2.41], p = 0.01), and require a longer postnatal hospital stay (mean difference 0.4 day, [95% CI 0.1, 0.7], p = 0.01) than those with a normal glucose tolerance. Infants born to BGDM mothers were more likely to be born preterm (10.7% vs 6.4%, RR 1.68, [95% CI 1.00, 2.80], p = 0.05), have macrosomia (birthweight ≥4.5 kg) (4.3% vs 1.7%, RR 2.53, [95% CI 1.06, 6.03], p = 0.04), be admitted to the neonatal intensive care unit (NICU) (6.5% vs 3.0%, RR 2.18, [95% CI 1.09, 4.36], p = 0.03) or the neonatal nursery (40.3% vs 28.4%, RR 1.42, [95% CI 1.14, 1.76], p = 0.002), and have a longer hospital stay (p = 0.001). More infants in the BGDM group had Sarnat stage 2 or 3 neonatal encephalopathy (12.9% vs 7.8%, RR 1.65, [95% CI 1.04, 2.63], p = 0.03). Conclusion: Women with BGDM and their infants had an increased risk of adverse health outcomes compared with women with a negative OGCT. Intervention strategies to reduce the risks for these women and their infants need evaluation. Trial registration: Current Controlled Trials ISRCTN00416244Hong Ju, Alice R. Rumbold, Kristyn J. Willson and Caroline A. Crowthe
    corecore