49 research outputs found

    Laparoscopic adjustable banded roux-en-y gastric bypass as a primary procedure for the super-super-obese (body mass index > 60 kg/m2)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is no consensus opinion regarding the optimal procedure of choice in super-super-morbid obesity (Body mass index, BMI > 60 kg/m2). Roux-en-Y gastric bypass (RYGB) is associated with failure to achieve or maintain 50% excess weight loss (EWL) or BMI < 35 in approximately 15% of patients. Also, percent EWL is significantly less after 1-year in the super-super-obese group as compared with the less obese group and many patients are still technically considered to be obese (lowest post-surgical BMI > 35) following RYGB surgery in this group. The addition of adjustable gastric band (AGB) to RYGB has been reported as a revisional procedure but this combined bariatric procedure has not been explored as a primary operation.</p> <p>Methods</p> <p>In a primary laparoscopic RYGB, an AGB is drawn around the gastric pouch through a small opening between the blood vessels on the lesser curve and the gastric pouch. The band is then fixed by suturing the gastric remnant to the gastric pouch both above and below the band to prevent slippage.</p> <p>Results</p> <p>Between November 2009 and March 2010, 6 consecutive super-super-obese patients underwent a primary laparoscopic adjustable banded Roux-en-Y gastric bypass procedure at our institution. One male patient (21 years, BMI 70 kg/m²) developed a pneumonia postoperatively. No other postoperative complications were observed.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first series of patients that underwent a laparoscopic adjustable banded RYGB as a primary operation for the super-super obese in the indexed literature. With the combined procedure, a sequential action mechanism for weight loss is to be expected. The restrictive, malabsorptive and hormonal working mechanism of the RYGB will induce weight loss from the start reaching a stabilised plateau of weight after 12 - 18 months. At that time, filling of the band can be started resulting in further gastric pouch restriction and increased weight loss. Moreover, besides improving the results of total weight loss, a gradual filling of the band can as well prevent the RYGB patient from weight regain if restriction would fade away with time.</p

    Glial Processes at the Drosophila Larval Neuromuscular Junction Match Synaptic Growth

    Get PDF
    Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ), we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ

    Epsin 1 Promotes Synaptic Growth by Enhancing BMP Signal Levels in Motoneuron Nuclei

    Get PDF
    We thank Carl-Henrik Heldin (Uppsala University, Sweden) for his generous gift of the PS1 pMad antibody, Hugo Bellen, Corey Goodman, Janis Fischer, Graeme Davis, Guillermo Marques, Michael O'Connor, Kate O'Connor-Giles, and the Bloomington Drosophila Stock Center for flies strains, the Developmental Studies Hybridoma Bank at the University of Iowa for antibodies to Wit and CSP; Marie Phillips for advice on membrane fractionation; Avital Rodal, Kate O'Connor-Giles, Ela Serpe, Kristi Wharton, Mojgan Padash-Barmchi for discussions or comments on the manuscript. We also thank Jody Summers at OUHSC for her generosity in letting us to use her confocal microscope.Conceived and designed the experiments: PAV TRF LRC BZ. Performed the experiments: PAV TRF LRC SMR HB NER BZ. Analyzed the data: PAV TRF LRC SMR HB NER BZ. Wrote the paper: PAV TRF BZ.Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei.Yeshttp://www.plosone.org/static/editorial#pee

    The Roles of the Dystrophin-Associated Glycoprotein Complex at the Synapse

    Full text link

    Repair of non-circumferential cervical trachea defects by three different latissimus dorsi flaps. A comparative studyin an experimental setting.

    No full text
    BACKGROUND: Large intrathoracic airway defects may be closed using a pedicled latissimus dorsi (LD) flap, with rewarding results. This study addresses the question of whether this holds true for extrathoracic non-circumferential tracheal defects. METHODS: A cervical segment of the trachea of 4 x 1 cm was resected in 9 white male pigs. The defect was stented with a silicone stent for 3 months and closed either by an LD flap alone (group a, n = 3), an LD flap with an attached rib segment covered by pleura (group b, n = 3), or an LD flap reinforced by a perforated polylactide (MacroPore) plate (group c, n = 3). The trachea was assessed by rigid endoscopy at 3 and 4 months and histologically at 4 months postoperatively. RESULTS: The degree of stenosis at the level of the reconstruction at 4 months was 25, 50 and 75% in group a, 15, 50 and 60% in group b, and 20, 95 and 95% in group c, respectively. The percentage of the defect covered by columnar epithelium was 100% in all animals of group a, 60, 100 and 100% in group b, and 10, 0 and 0% in group c. Resorption of the rib was seen in all animals of group b and obstructive inflammatory polyps were found in 2 animals of group c. CONCLUSION: Pedicled LD flaps provided less satisfactory results for closure of large non-circumferential extrathoracic airway defects than observed after intrathoracic reconstruction. A pedicled rib segment added to the LD flap did not improve the results obtained from LD flap repair alone, and an embedded MacroPore prosthesis may result in severe airway stenosis due to plate migration and intense inflammatory reaction protruding into the tracheal lumen
    corecore