48 research outputs found

    Cardiac oxygen supply is compromised during the night in hypertensive patients

    Get PDF
    The enhanced heart rate and blood pressure soon after awaking increases cardiac oxygen demand, and has been associated with the high incidence of acute myocardial infarction in the morning. The behavior of cardiac oxygen supply is unknown. We hypothesized that oxygen supply decreases in the morning and to that purpose investigated cardiac oxygen demand and oxygen supply at night and after awaking. We compared hypertensive to normotensive subjects and furthermore assessed whether pressures measured non-invasively and intra-arterially give similar results. Aortic pressure was reconstructed from 24-h intra-brachial and simultaneously obtained non-invasive finger pressure in 14 hypertensives and 8 normotensives. Supply was assessed by Diastolic Time Fraction (DTF, ratio of diastolic and heart period), demand by Rate-Pressure Product (RPP, systolic pressure times heart rate, HR) and supply/demand ratio by Adia/Asys, with Adia and Asys diastolic and systolic areas under the aortic pressure curve. Hypertensives had lower supply by DTF and higher demand by RPP than normotensives during the night. DTF decreased and RPP increased in both groups after awaking. The DTF of hypertensives decreased less becoming similar to the DTF of normotensives in the morning; the RPP remained higher. Adia/Asys followed the pattern of DTF. Findings from invasively and non-invasively determined pressure were similar. The cardiac oxygen supply/demand ratio in hypertensive patients is lower than in normotensives at night. With a smaller night-day differences, the hypertensives’ risk for cardiovascular events may be more evenly spread over the 24 h. This information can be obtained noninvasively

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF

    Blood pressure and heart rate response to sudden changes of gravity during exercise

    No full text

    Validity and variability of xBRS: instantaneous cardiac baroreflex sensitivity

    No full text
    Spontaneous oscillations of blood pressure (BP) and interbeat interval (IBI) may reveal important information on the underlying baroreflex control and regulation of BP. We evaluated the method of continuously measured instantaneous baroreflex sensitivity by cross correlation (xBRS) validating its mean value against the gold standard of phenylephrine (Phe) and nitroprusside (SNP) bolus injections, and focusing on its spontaneous changes quantified as variability around the mean. For this purpose, we analyzed data from an earlier study of eight healthy males (aged 25-46 years) who had received Phe and SNP in conditions of baseline and autonomic blocking agents: atropine, propranolol, and clonidine. Average xBRS corresponds well to Phe/SNP-BRS, with xBRS levels ranging from 1.2 (atropine) to 102 msec/mmHg (subject asleep under clonidine). Time shifts from BP-to IBI-signal increased from <= 1 sec (maximum correlations within the current heartbeat) to 3-5 sec (under atropine). Plotted on a logarithmic vertical scale, xBRS values show 40% variability (defined as SD/mean) over the whole range in the various conditions, except twice when the subjects had fallen asleep and it dropped to 20%. The xBRS oscillates at frequencies of 0.1 Hz and lower, dominant between 0.020.05 Hz. Although xBRS is the result of IBI/BP-changes, no linear coherence was found in the cross-spectra of the xBRS-signal and IBI or BP. We speculate that the level of variability in the xBRS-signal may act as a probe into the central nervous condition, as evidenced in the two subjects who fell asleep with high xBRS and only 20% of relative variation

    Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study)

    No full text
    This study compared spontaneous baroreflex sensitivity (BRS) estimates obtained from an identical set of data by 11 European centers using different methods and procedures. Noninvasive blood pressure (BP) and ECG recordings were obtained in 21 subjects, including 2 subjects with established baroreflex failure. Twenty-one estimates of BRS were obtained by methods including the two main techniques of BRS estimates, i.e., the spectral analysis (11 procedures) and the sequence method (7 procedures) but also one trigonometric regressive spectral analysis method (TRS), one exogenous model with autoregressive input method (X-AR), and one Z method. With subjects in a supine position, BRS estimates obtained with calculations of alpha-coefficient or gain of the transfer function in both the low-frequency band or high-frequency band, TRS, and sequence methods gave strongly related results. Conversely, weighted gain, X-AR, and Z exhibited lower agreement with all the other techniques. In addition, the use of mean BP instead of systolic BP in the sequence method decreased the relationships with the other estimates. Some procedures were unable to provide results when BRS estimates were expected to be very low in data sets (in patients with established baroreflex failure). The failure to provide BRS values was due to setting of algorithmic parameters too strictly. The discrepancies between procedures show that the choice of parameters and data handling should be considered before BRS estimation. These data are available on the web site (http://www.cbi.polimi.it/glossary/eurobavar.html) to allow the comparison of new techniques with this set of results
    corecore