416 research outputs found

    Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management

    Get PDF
    Cardiac arrhythmias are frequently seen in patients with dilated cardiomyopathy (DCM) and can precipitate heart failure and death. In patients with non-ischaemic DCM, evidence for the benefit of an implantable cardioverter-defibrillator (ICD) for primary prevention of sudden cardiac death has recently been questioned. Algorithms devised to identify high-risk individuals who might benefit most from ICD implantation have focussed on clinical criteria with little attention paid to the underlying aetiology of DCM. Malignant ventricular arrhythmias often occur as a nonspecific consequence of DCM but can also be a primary manifestation of disease in heritable forms of DCM and may precede DCM onset. We undertook a literature search and identified 11 genes that have been associated with DCM and ventricular arrhythmias in multiple kindreds. Many of these genes fall into a diagnostic grey zone between left-dominant arrhythmogenic right ventricular cardiomyopathy and arrhythmic DCM. Genes associated predominantly with arrhythmic DCM included LMNA and SCN5A, as well as the more recently-reported DCM disease genes, RBM20, FLNC, and TTN. Recognition of arrhythmic DCM genotypes is important, as this may impact on clinical management. In particular, prophylactic ICD implantation and early referral for heart transplantation may be indicated in genotype-positive individuals. Collectively, these findings argue in favour of including genetic testing in standard-of-care management of familial DCM. Further studies in genotyped patient cohorts are required to establish the long-term health and economic benefits of this strategy

    Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system

    Get PDF
    For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system

    CAR-Net: Clairvoyant Attentive Recurrent Network

    Full text link
    We present an interpretable framework for path prediction that leverages dependencies between agents' behaviors and their spatial navigation environment. We exploit two sources of information: the past motion trajectory of the agent of interest and a wide top-view image of the navigation scene. We propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to look in a large image of the scene when solving the path prediction task. Our method can attend to any area, or combination of areas, within the raw image (e.g., road intersections) when predicting the trajectory of the agent. This allows us to visualize fine-grained semantic elements of navigation scenes that influence the prediction of trajectories. To study the impact of space on agents' trajectories, we build a new dataset made of top-view images of hundreds of scenes (Formula One racing tracks) where agents' behaviors are heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize to unseen scenes.Comment: The 2nd and 3rd authors contributed equall

    Ablation lesions in Koch's triangle assessed by three-dimensional myocardial contrast echocardiography

    Get PDF
    BACKGROUND: Myocardial contrast echocardiography (MCE) allows visualization of radiofrequency (RF) ablation lesions in the left ventricle in an animal model. Aim: To test whether MCE allows visualization of RF and cryo ablation lesions in the human right atrium using three-dimensional echocardiography. METHODS: 18 patients underwent catheter ablation of a supraventricular tachycardia and were included in this prospective single-blind study. Twelve patients were ablated inside Koch's triangle and 6, who served as controls, outside this area. Three-dimensional echocardiography of Koch's triangle was performed before and after the ablation procedure in all patients, using respiration and ECG gated pullback of a 9 MHz ICE transducer, with and without continuous intravenous echocontrast infusion (SonoVue, Bracco). Two independent observers analyzed the data off-line. RESULTS: MCE identified ablation lesions as a low contrast area within the normal atrial myocardial tissue. Craters on the endocardial surface were seen in 10 (83%) patients after ablation. Lesions were identified in 11 out of 12 patients (92%). None of the control patients were recognized as having been ablated. The confidence score of the independent echo reviewer tended to be higher when the number of applications increased. CONCLUSIONS: 1. MCE allows direct visualization of ablation lesions in the human atrial myocardium. 2. Both RF and cryo energy lesions can be identified using MCE

    Visualization of elusive structures using intracardiac echocardiography: Insights from electrophysiology

    Get PDF
    Electrophysiological mapping and ablation techniques are increasingly used to diagnose and treat many types of supraventricular and ventricular tachycardias. These procedures require an intimate knowledge of intracardiac anatomy and their use has led to a renewed interest in visualization of specific structures. This has required collaborative efforts from imaging as well as electrophysiology experts. Classical imaging techniques may be unable to visualize structures involved in arrhythmia mechanisms and therapy. Novel methods, such as intracardiac echocardiography and three-dimensional echocardiography, have been refined and these technological improvements have opened new perspectives for more effective and accurate imaging during electrophysiology procedures. Concurrently, visualization of these structures noticeably improved our ability to identify intracardiac structures. The aim of this review is to provide electrophysiologists with an overview of recent insights into the structure of the heart obtained with intracardiac echocardiography and to indicate to the echo-specialist which structures are potentially important for the electrophysiologist

    Intracardiac echocardiography to guide transseptal catheterization for radiofrequency catheter ablation of left-sided accessory pathways: two case reports

    Get PDF
    Intracardiac echocardiography (ICE) is a useful tool for guiding transseptal puncture during electrophysiological mapping and ablation procedures. Left-sided accessory pathways (LSAP) can be ablated by using two different modalities: retrograde approach through the aortic valve and transseptal approach with puncture of the fossa ovalis. We shall report two cases of LSAP where transcatheter radiofrequency ablation (TCRFA) was firstly attempted via transaortic approach with ineffective results. Subsequently, a transseptal approach under ICE guidance has been performed. During atrial septal puncture ICE was able to locate the needle tip position precisely and provided a clear visualization of the "tenting effect" on the fossa ovalis. ICE allowed a better mapping of the mitral ring and a more effective catheter ablation manipulation and tip contact which resulted in a persistent and complete ablation of the accessory pathway with a shorter time of fluoroscopic exposure. ICE-guided transseptal approach might be a promising modality for TCRFA of LSAP

    Sports Nutrition: What the Future may Bring

    Get PDF
    The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological processes that motivate the participant to perform optimally. Sports nutrition as a field has grown substantially over the past 50 years, from glycogen loading to today's scientifically validated ergogenic aids. The last ten years has seen the largest advancement of sports nutrition, with the following areas driving much of the research: the effects of exercise on protein utilization, meal timing to maximize the anabolic response, the potential for ribose to benefit those engaged in high-energy repetitive sports, and creatine and its uses within athletics and medicine. The future of sports nutrition will dictate that we 1) collectively strive for a higher standard of care and education for counseling athletes and 2) integrate different disciplines. We are in an era of unprecedented growth and the new knowledge is constantly evolving. The International Society of Sports Nutrition (ISSN) will contribute to this exciting field in many ways, and we ask for your contribution by sharing your passion, stories, research, and life experiences with us

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    Electrophysiologic Studies and Radiofrequency Catheter Ablation of Ectopic Atrial Tachycardia in Children

    Get PDF
    Ectopic atrial tachycardia (EAT) often resists medical therapy, making radiofrequency catheter ablation (RFCA) the preferred treatment. This study reviewed the records of 35 patients who underwent electrophysiologic studies (EPS) and 39 RFCA procedures for EAT during a 10-year period. Of the 35 patients, 10 (28%) presented with decreased ventricular function and tachycardia-induced cardiomyopathy (TIC). The EAT originated on the right atrial side in 19 patients (54%) and on the left atrial side in the remaining 16 patients (46%). The right atrial sites included the right atrial appendage (RAA) (n = 9, 25%), the tricuspid annulus (n = 7, 20%), and the crista terminalis (n = 3). The left atrial sites included the left atrial appendage (LAA) (n = 6, 17%), the pulmonary veins (n = 5, 14%), the mitral annulus (n = 3), and the posterior wall of the left atrium (n = 2). The mechanism of all EAT probably is automaticity. All EATs could be abolished using RFCA. Follow-up data were available for all patients 2 to 8 years after RFCA. All 35 patients remained recurrence free, and ventricular function improved for all 10 patients with TIC. The origin of EAT in children differed from its origin in adults. The authors conclude that RFCA is a safe and effective treatment option for children with refractory EAT and should be considered early in the course of their illness
    corecore