14 research outputs found

    Total 18F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour

    Get PDF
    Positron emission tomography (PET) using 6-[(18)F]fluoro-L-dihydroxyphenylalanine ((18)F-dopa) has an excellent sensitivity to detect carcinoid tumour lesions. (18)F-dopa tumour uptake and the levels of biochemical tumour markers are mediated by tumour endocrine metabolic activity. We evaluated whether total (18)F-dopa tumour uptake on PET, defined as whole-body metabolic tumour burden (WBMTB), reflects tumour load per patient, as measured with tumour markers. Seventy-seven consecutive carcinoid patients who underwent an (18)F-dopa PET scan in two previously published studies were analysed. For all tumour lesions mean standardised uptake values (SUVs) at 40% of the maximal SUV and tumour volume on (18)F-dopa PET were determined and multiplied to calculate a metabolic burden per lesion. WBMTB was the sum of the metabolic burden of all individual lesions per patient. The 24-h urinary serotonin, urine and plasma 5-hydroxindoleacetic acid (5-HIAA), catecholamines (nor)epinephrine, dopamine and their metabolites, measured in urine and plasma, and serum chromogranin A served as tumour markers. All but 1 were evaluable for WBMTB; 74 patients had metastatic disease. (18)F-dopa PET detected 979 lesions. SUV(max) on (18)F-dopa PET varied up to 29-fold between individual lesions within the same patients. WBMTB correlated with urinary serotonin (r = 0.51) and urinary and plasma 5-HIAA (r = 0.78 and 0.66). WBMTB also correlated with urinary norepinephrine, epinephrine, dopamine and plasma dopamine, but not with serum chromogranin A. Tumour load per patient measured with (18)F-dopa PET correlates with tumour markers of the serotonin and catecholamine pathway in urine and plasma in carcinoid patients, reflecting metabolic tumour activity

    What are the risks of manual treatment of the spine? A scoping review for clinicians

    No full text
    corecore