213 research outputs found

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants

    Get PDF
    Most plants are known as C-3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C-4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C-4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C-4 photosynthesis evolved first. Here we report that tobacco, a typical C-3 plant, shows characteristics of C-4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C-4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C-4 photosynthesis in cells around the vascular bundles of stems of C-3 plants might explain why C-4 photosynthesis has evolved independently many times

    Dispersive wave runup on non-uniform shores

    Get PDF
    Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) for more details).Comment: 8 pages, 6 figures, 18 references. This preprint is submitted to FVCA6 conference proceedings. Other author papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Synergistic Binding of bHLH Transcription Factors to the Promoter of the Maize NADP-ME Gene Used in C4 Photosynthesis Is Based on an Ancient Code Found in the Ancestral C3 State.

    Get PDF
    C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis

    Tai Chi for treating knee osteoarthritis: Designing a long-term follow up randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knee Osteoarthritis (KOA) is a major cause of pain and functional impairment among elders. Currently, there are neither feasible preventive intervention strategies nor effective medical remedies for the management of KOA. Tai Chi, an ancient Chinese mind-body exercise that is reported to enhance muscle function, balance and flexibility, and to reduce pain, depression and anxiety, may safely and effectively be used to treat KOA. However, current evidence is inconclusive. Our study examines the effects of a 12-week Tai Chi program compared with an attention control (wellness education and stretching) on pain, functional capacity, psychosocial variables, joint proprioception and health status in elderly people with KOA. The study will be completed by July 2009.</p> <p>Methods/Design</p> <p>Forty eligible patients, age > 55 yr, BMI ≤ 40 kg/m<sup>2 </sup>with tibiofemoral osteoarthritis (American College of Rheumatology criteria) are identified and randomly allocated to either Tai Chi (10 modified forms from classical Yang style Tai Chi) or attention control (wellness education and stretching). The 60-minute intervention sessions take place twice weekly for 12 weeks. The study is conducted at an urban tertiary medical center in Boston, Massachusetts. The primary outcome measure is the Western Ontario and McMaster Universities (WOMAC) pain subscale at 12 weeks. Secondary outcomes include weekly WOMAC pain, function and stiffness scores, patient and physician global assessments, lower-extremity function, knee proprioception, depression, self-efficacy, social support, health-related quality of life, adherence and occurrence of adverse events after 12, 24 and 48 weeks.</p> <p>Discussion</p> <p>In this article, we present the challenges of designing a randomized controlled trial with long-term follow up. The challenges encountered in this design are: strategies for recruitment, avoidance of selection bias, the actual practice of Tai Chi, and the maximization of adherence/follow-up while conducting the clinical trial for the evaluation of the effectiveness of Tai Chi on KOA.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT00362453</p

    Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities.

    Get PDF
    BACKGROUND: Kawasaki disease (KD) is an acute pediatric vasculitis in which host genetics influence both susceptibility to KD and the formation of coronary artery aneurysms. Variants discovered by genome-wide association studies and linkage studies only partially explain the influence of genetics on KD susceptibility. METHODS AND RESULTS: To search for additional functional genetic variation, we performed pathway and gene stability analysis on a genome-wide association study data set. Pathway analysis using European genome-wide association study data identified 100 significantly associated pathways (P<5×10-4). Gene stability selection identified 116 single nucleotide polymorphisms in 26 genes that were responsible for driving the pathway associations, and gene ontology analysis demonstrated enrichment for calcium transport (P=1.05×10-4). Three single nucleotide polymorphisms in solute carrier family 8, member 1 (SLC8A1), a sodium/calcium exchanger encoding NCX1, were validated in an independent Japanese genome-wide association study data set (meta-analysis P=0.0001). Patients homozygous for the A (risk) allele of rs13017968 had higher rates of coronary artery abnormalities (P=0.029). NCX1, the protein encoded by SLC8A1, was expressed in spindle-shaped and inflammatory cells in the aneurysm wall. Increased intracellular calcium mobilization was observed in B cell lines from healthy controls carrying the risk allele. CONCLUSIONS: Pathway-based association analysis followed by gene stability selection proved to be a valuable tool for identifying risk alleles in a rare disease with complex genetics. The role of SLC8A1 polymorphisms in altering calcium flux in cells that mediate coronary artery damage in KD suggests that this pathway may be a therapeutic target and supports the study of calcineurin inhibitors in acute KD

    An approach to identify a minimum and rational proportion of caesarean sections in resource-poor settings: a global network study

    Get PDF
    BACKGROUND: Caesarean section prevalence is increasing in Asia and Latin America while remaining low in most African regions. Caesarean section delivery is effective for saving maternal and infant lives when they are provided for medically-indicated reasons. On the basis of ecological studies, caesarean delivery prevalence between 9% and 19% has been associated with better maternal and perinatal outcomes, such as reduced maternal land fetal mortality. However, the specific prevalence of obstetric and medical complications that require caesarean section have not been established, especially in low-income and middle-income countries (LMICs). We sought to provide information to inform the approach to the provision of caesarean section in low-resource settings. METHODS: We did a literature review to establish the prevalence of obstetric and medical conditions for six potentially life-saving indications for which caesarean section could reduce mortality in LMICs. We then analysed a large, prospective population-based dataset from six LMICs (Argentina, Guatemala, Kenya, India, Pakistan, and Zambia) to determine the prevalence of caesarean section by indication for each site. We considered that an acceptable number of events would be between the 25th and 75th percentile of those found in the literature. FINDINGS: Between Jan 1, 2010, and Dec 31, 2013, we enrolled a total of 271 855 deliveries in six LMICs (seven research sites). Caesarean section prevalence ranged from 35% (3467 of 9813 deliveries in Argentina) to 1% (303 of 16 764 deliveries in Zambia). Argentina's and Guatemala's sites all met the minimum 25th percentile for five of six indications, whereas sites in Zambia and Kenya did not reach the minimum prevalence for caesarean section for any of the indications. Across all sites, a minimum overall caesarean section of 9% was needed to meet the prevalence of the six indications in the population studied. INTERPRETATION: In the site with high caesarean section prevalence, more than half of the procedures were not done for life-saving conditions, whereas the sites with low proportions of caesarean section (below 9%) had an insufficient number of caesarean procedures to cover those life-threatening causes. Attempts to establish a minimum caesarean prevalence should go together with focusing on the life-threatening causes for the mother and child. Simple methods should be developed to allow timely detection of life-threatening conditions, to explore actions that can remedy those conditions, and the timely transfer of women with those conditions to health centres that could provide adequate care for those conditions. FUNDING: Eunice Kennedy Shriver National Institute of Child Health and Human Development

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature

    Get PDF
    BACKGROUND: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING: European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC
    corecore