10 research outputs found

    Generation of Long Insert Pairs Using a Cre-LoxP Inverse PCR Approach

    Get PDF
    Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or more of limitations, such as relatively small insert size; unable to distinguish the junction of two ends; and/or low throughput. We developed a new approach, Cre-LoxP Inverse PCR Paired-End (CLIP-PE), which exploits the advantages of (1) Cre-LoxP recombination system to efficiently circularize large DNA fragments, (2) inverse PCR to enrich for the desired products that contain both ends of the large DNA fragments, and (3) the use of restriction enzymes to introduce a recognizable junction site between ligated fragment ends and to improve the self-ligation efficiency. We have successfully created CLIP-PE libraries up to 22 kb that are rich in informative read pairs and low in small fragment background. These libraries have demonstrated the ability to improve genome assemblies. The CLIP-PE methodology can be implemented with existing and future next-generation sequencing platforms

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    In Vitro Models of Brain Disorders

    No full text
    The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models

    The first target experiments on the national ignition facility

    No full text
    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing oil intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries

    Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let’s talk about the lipids in the room

    No full text

    Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    No full text
    corecore