10,622 research outputs found

    Dimensional instability of cement bonded particleboard - Part 2: Behaviour and its prediction under cyclic changes in RH

    Get PDF
    This is a post print version of the article. The official published version can be obtained from the link below.This paper examines the dimensional instability of cement bonded particleboard (CBPB) and discusses the behaviour of CBPB during cyclic changes in relative humidities (RH). The results indicated that the changes of CBPB in both mass and dimensions reflected the changes in RH; in a cycle 90–65–35–65–90%RH the change of per percentage change in RH was 1.0:1.3:1.3:2.5 for mass, 1:2:2:1 for length and 1.3:1.1:1.0:1.0 for thickness. The changes were closely related to the structure of CBPB and the nature of the cement paste and wood chips. Thickness change was double that of the length change between 65 and 35%RH and triple that between 65 and 90%RH. The rate of change in mass was much higher than that in dimensions. The hysteresis loops were dissimilar to those of other wood and wood-based materials, with the loops of mass change closed between 65 and 90%RH, while the loops for dimensional changes were open. A set of the former loops moved upward and the latter moved downward with increasing number of cycles, corresponding to an accumulated increase in mass, but decrease in dimensions. The models developed for CBPB under constant and a single changing RH were successfully applied to changes under cyclic RH. The sorption behaviour and dimensional movement of CBPB has been shown to be influenced not only by RH, but also by its intermediate history, with the maximum values for change within every phase of sorption, in both mass and dimensions, being higher for the cycling between 35–90%RH than the cycling regime 35–65–90%RH. The ratios of dimensional changes to mass change of CBPB were greater under the latter regime than under the former regime.Partly Financial Support from the British Council

    Synchrotron validation of inline coherent imaging for tracking laser keyhole depth

    Get PDF
    In situ monitoring is critical to the increasing adoption of laser powder bed fusion (LPBF) and laser welding by industry for manufacture of complex metallic components. Optical coherence tomography (OCT), an interferometric imaging technique adapted from medical applications, is now widely used for operando monitoring of morphology during high-power laser material processing. However, even in stable processing regimes, some OCT depth measurements from the keyhole (vapor cavity formed at laser beam spot) appear too shallow or too deep when compared to ex situ measurements of weld depth. It has remained unclear whether these outliers are due to imaging artifacts, multiple scattering of the imaging beam within the keyhole, or real changes in keyhole depth, making it difficult to accurately extract weld depth and determine error bounds. To provide a definitive explanation, we combine inline coherent imaging (ICI), a type of OCT, with synchrotron X-ray imaging for simultaneous, operando monitoring of the full 2-dimensional keyhole profile at high-speed (280 kHz and 140 kHz, respectively). Even in a highly turbulent pore-generation mode, the depth measured with ICI closely follows the keyhole depth extracted from radiography (>80% within ± 14 µm). Ray-tracing simulations are used to confirm that the outliers in ICI depth measurements (that significantly disagree with radiography) primarily result from multiple reflections of the imaging light (57%). Synchrotron X-ray imaging also enables tracking of bubble and pore formation events. Pores are generated during laser welding when the sidewalls of the keyhole rapidly (>10 m/s) collapse inwards, pinching off a bubble from the keyhole root and resulting in a rapid decrease in keyhole depth. Evidence of bubble formation can be found in ICI depth profiles alone, as rapid depth changes exhibit moderate correlation with bubble formation events (0.26). This work moves closer to accurate, localized defect detection during laser welding and LPBF using ICI

    Thylakoid-bound ascorbate peroxidase increases resistance to salt stress and drought in Brassica napus

    Get PDF
    Reactive oxygen species (ROS) are cellular indicators of stress. In plants, they function as secondary messengers in response to environmental stress. Ascorbate peroxidase (APX) is an important enzyme directly involved in the scavenging of ROS. In this study, we aimed at identifying the function of the Brassica napus thylakoid APX (tAPX). Germination efficiencies of seeds of B. napus plants over expressing tAPX were higher than those of the seeds of the control plants; this was true both on Murashige and Skoog medium with 300 mM mannitol and with 150 mM NaCl. Further experiments showed that 40-day-old seedlings of the control plants turned yellow, withered, and subsequently died, when treated with 150 mM NaCl for 12 days. In contrast, transgenic plants over expressing tAPX survived this treatment and had at least three green leaves at the end of the experiment. When 40-dayold seedlings were withheld water for 10 days, followed by a 2 day recovery, the control plants exhibited smaller leaves and shorter stems in comparison to tAPX-over expressing plants. In addition, compared with control plants, tAPX-overexpressing plants show reduced hydrogen peroxide accumulation and increased APX relative activity. Our results demonstrate that tAPX plays an important role in resistance to salt stress and drought in plants.Key words: tAPX, transgenic lines, Brassica napus, salt stress, water deficiency

    Global Regulation on microRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma

    Get PDF
    Recent work has revealed the causative links between deregulation of microRNAs (miRNAs) and cancer development. In hepatocellular carcinoma (HCC), aberrant expression of miRNAs has been observed, but the molecular mechanisms that contribute to such changes remains to be elucidated. Here, we reported the analysis of miRNA expression in 94 pairs of tumor and adjacent nontumor tissues from HBV-associated HCC in Chinese patients. We found miRNAs were aberrantly expressed in HCC tissues. To investigate the cause of such deregulation, we detected changes in DNA copy number by measuring locus-specific hybridization intensity, and found changes in expression of several miRNAs are correlated with genomic amplification or deletion. For example, the genomic regions of miR-30d and miR-151 were amplified in ∼50% of HCC tumor tissues, and the expressions of these miRNAs are significantly correlated with DNA copy number. We also employed cDNA microarray data, and provide evidence that key regulators of the miRNA biosynthetic pathway, including DROSHA, DGCR8, AGO1, and AGO2, are frequently overexpressed in HCC. This study provides molecular clues that may contribute to the global changes of miRNA expression in HCC. Copyright © 2011, Mary Ann Liebert, Inc.published_or_final_versio

    Development and application of a loop-mediated isothermal amplification method for rapid detection of Haemophilus parasuis

    Get PDF
    Haemophilus parasuis is the causative agent of Glässer’s disease that has received much attention recently, due to the increasing economic losses this disease inflicts upon the pig industry worldwide. In this study, loop-mediated isothermal amplification method (LAMP) methodology was designed for diagnosing H. parasuis infections and tested against 56 clinical samples. Two sets of primers for LAMP were designed based on the H. parasuis inf B gene sequence. Target DNA was amplified and visualized on agarose gels after 50 min incubation at 63°C. The LAMP amplicon was also directly visualized in the reaction tubes by the naked eye following the addition of SYBR green I. The detection limit of the inf BLAMP method was 10 cfu mL-1, that was 10 times more sensitive than conventional PCR. Furthermore, positive rates of H. parasuis detection using inf B-LAMP were higher (46.4%, 26/56) than the rates obtained with conventional PCR (33.9%, 19/56). inf B-LAMP specificity analysis demonstrated no crossreactivity with any other swine pathogens. In conclusion, inf B-LAMP was more sensitive and faster and could be carried out in the absence of expensive equipment. Furthermore, the visual readout demonstrated great potential for the use of inf B-LAMP in the clinical detection of H. parasuis.Key words: Glässer’s disease, Haemophilus parasuis, inf B, PCR, LAM

    Regulation of the flowering time of Arabidopsis thaliana by thylakoid ascorbate peroxidase

    Get PDF
    Flowering time of higher plants is precisely controlled by various exogenous and endogenous factors. Recent researches implied that H2O2 is a potential flowering initiation factor. In order to confirm this hypothesis, thylakoid ascorbate peroxidase (tAPX) overexpressing Arabidopsis, the mutant line containing a T-DNA insertion and the wild type have been analyzed in this study, since APX was an important enzyme scavenging H2O2 in plant cells. It was found that during the vegetative growth stage there was no phenotypic difference among the three lines under common conditions, but 3,3’-diaminobenzidinetetrahydrochloride (DAB) staining showed that the endogenous H2O2 content varied: the mutant line had the highest content; the wild type took the second place, while the tAPX-overexpressing line had the lowest H2O2 content. This trend was in accordance with the bolting and flowering time during the following reproductive growth stage: the mutant bolted and flowered first, followed by the wild type, and the overexpressing line bolted and flowered last. This correlation confirmed the previous hypothesis that “H2O2 is a possible factor in flowering induction”.Keywords: Ascorbate peroxidase, Arabidopsis thaliana, flowering time, hydrogen peroxide

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1

    Stealth Supersymmetry

    Full text link
    We present a broad class of supersymmetric models that preserve R-parity but lack missing energy signatures. These models have new light particles with weak-scale supersymmetric masses that feel SUSY breaking only through couplings to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson pairs, with small mass splittings and hence small phase space for decays carrying away invisible energy. The simplest scenario has low-scale SUSY breaking, with missing energy only from soft gravitinos. This scenario is natural, lacks artificial tunings to produce a squeezed spectrum, and is consistent with gauge coupling unification. The resulting collider signals will be jet-rich events containing false resonances that could resemble signatures of R-parity violation. We discuss several concrete examples of the general idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure

    DNA methylation modules in airway smooth muscle are associated with asthma severity

    Get PDF
    Abnormal DNA methylation patterns distinguish airway smooth muscle cell function in asthma and asthma severity
    corecore