65 research outputs found

    Input-modulation as an alternative to conventional learning strategies

    Get PDF
    Animals use various strategies for learning stimulus-reward associations. Computational methods that mimic animal behaviour most commonly interpret learning as a high level phenomenon, in which the pairing of stimulus and reward leads to plastic changes in the final output layers where action selection takes place. Here, we present an alternative input-modulation strategy for forming simple stimulus-response associations based on reward. Our model is motivated by experimental evidence on modulation of early brain regions by reward signalling in the honeybee. The model can successfully discriminate dissimilar odours and generalise across similar odours, like bees do. In the most simplified connectionist description, the new input- modulation learning is shown to be asymptotically equivalent to the standard perceptron

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors

    Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera)

    Get PDF
    When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits

    Abstract concept learning in a simple neural network inspired by the insect brain

    Get PDF
    The capacity to learn abstract concepts such as 'sameness' and 'difference' is considered a higher-order cognitive function, typically thought to be dependent on top-down neocortical processing. It is therefore surprising that honey bees apparantly have this capacity. Here we report a model of the structures of the honey bee brain that can learn sameness and difference, as well as a range of complex and simple associative learning tasks. Our model is constrained by the known connections and properties of the mushroom body, including the protocerebral tract, and provides a good fit to the learning rates and performances of real bees in all tasks, including learning sameness and difference. The model proposes a novel mechanism for learning the abstract concepts of 'sameness' and 'difference' that is compatible with the insect brain, and is not dependent on top-down or executive control processing

    Long-term memory shapes the primary olfactory center of an insect brain.

    No full text
    The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific stimuli in a given sensory modality and by working on networks with a modular and relatively simple organization. We have therefore focused on associative memories of individual odors and the possible related changes in the honeybee primary olfactory center, the antennal lobe (AL). As this brain structure is organized in well-identified morpho-functional units, the glomeruli, we looked for evidence of structural and functional plasticity in these units in relation with the bees' ability to store long-term memories (LTMs) of specific odors. Restrained bees were trained to form an odor-specific LTM in an appetitive Pavlovian conditioning protocol. The stability and specificity of this memory was tested behaviorally 3 d after conditioning. At that time, we performed both a structural and a functional analysis on a subset of 17 identified glomeruli by measuring glomerular volume under confocal microscopy, and odor-evoked activity, using in vivo calcium imaging. We show that long-term olfactory memory for a given odor is associated with volume increases in a subset of glomeruli. Independent of these structural changes, odor-evoked activity was not modified. Lastly, we show that structural glomerular plasticity can be predicted based on a putative model of interglomerular connections

    Two waves of transcription are required for long-term memory in the honeybee.

    No full text
    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after conditioning. We identified two separate time windows during which the transcription blockade impairs memory quantitatively and qualitatively, suggesting the occurrence of an early transcription wave (triggered during conditioning) and a later one (starting several hours after learning). Hence insects, like other species, would require two transcription waves for LTM formation
    corecore