24 research outputs found

    Relation between ventilatory pressures and intra-abdominal pressure

    No full text

    High creatinine clearance in critically ill patients with community-acquired acute infectious meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high dose of anti-infective agents is recommended when treating infectious meningitis. High creatinine clearance (CrCl) may affect the pharmacokinetic / pharmacodynamic relationships of anti-infective drugs eliminated by the kidneys. We recorded the incidence of high CrCl in intensive care unit (ICU) patients admitted with meningitis and assessed the diagnostic accuracy of two common methods used to identify high CrCl.</p> <p>Methods</p> <p>Observational study performed in consecutive patients admitted with community-acquired acute infectious meningitis (defined by >7 white blood cells/mm<sup>3</sup> in cerebral spinal fluid) between January 2006 and December 2009 to one medical ICU. During the first 7 days following ICU admission, CrCl was measured from 24-hr urine samples (24-hr-UV/P creatinine) and estimated according to Cockcroft-Gault formula and the simplified Modification of Diet in Renal Disease (MDRD) equation. High CrCl was defined as CrCl >140 ml/min/1.73 m<sup>2</sup> by 24-hr-UV/P creatinine. Diagnostic accuracy was performed with ROC curves analysis.</p> <p>Results</p> <p>Thirty two patients were included. High CrCl was present in 8 patients (25%) on ICU admission and in 15 patients (47%) during the first 7 ICU days for a median duration of 3 (1-4) days. For the Cockcroft-Gault formula, the best threshold to predict high CrCl was 101 ml/min/1.73 m<sup>2</sup> (sensitivity: 0.96, specificity: 0.75, AUC = 0.90 ± 0.03) with a negative likelihood ratio of 0.06. For the simplified MDRD equation, the best threshold to predict high CrCl was 108 ml/min/1.73 m<sup>2</sup> (sensitivity: 0.91, specificity: 0.80, AUC = 0.88 ± 0.03) with a negative likelihood ratio of 0.11. There was no difference between the estimated methods in the diagnostic accuracy of identifying high CrCl (p = 0.30).</p> <p>Conclusions</p> <p>High CrCl is frequently observed in ICU patients admitted with community-acquired acute infectious meningitis. The estimated methods of CrCl could be used as a screening tool to identify high CrCl.</p

    Implications of augmented renal clearance in critically ill patients

    No full text
    Critically ill patients can display markedly abnormal physiological parameters compared with those in ward-based or ambulatory settings. As a function of both the underlying inflammatory state and the interventions provided, these patients manifest substantial changes in their cardiovascular and renal function that are not always immediately discernable using standard diagnostic tests. Impaired renal function is well documented among such individuals; however, even patients with normal serum creatinine concentrations might display elevated glomerular filtration rates, a phenomenon we have termed augmented renal clearance (ARC). This finding has important ramifications for the accurate dosing of renally eliminated drugs, given that most pharmaceutical dosing regimens were validated outside the critical care environment. Empirical approaches to dosing are unlikely to achieve therapeutic drug concentrations in patients with ARC, placing them at risk of suboptimal drug exposure and potential treatment failure. With an increasing appreciation of this phenomenon, alternative dosing strategies will need to be investigated

    Assessment of renal function in clinical practice at the bedside of burn patients

    No full text
    International audienceWHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: * In burn patients it has been shown ([2]), that there is a correlation between the creatinine clearance (CL(CR)) and the clearance of inulin. * The CL(CR) has never been studied in burn patients who have normal serum creatinine. * The Robert, Kirkpatrick and sMDRD formulae have never been evaluated in burn patients. WHAT THIS STUDY ADDS: * Despite burn patients having normal serum creatinine concentrations, the study showed that there are large variations in CL(CR) which cannot be detected by single serum creatinine measurements, and which have important implications for drug therapy. * It showed that the formulae currently used to calculate creatinine clearance on the basis of serum creatinine are inadequate for use in burn patients, and they should be abandoned in favour of direct measurement from a 24 h urine collection. AIMS: The aim of this study was to evaluate whether the renal function of burn patients could be correctly assessed using a single serum creatinine measurement, within normal limits, and three prediction equations of glomerular filtration taking into account, serum creatinine, age, weight and sex. METHODS: This was a prospective study comprising 36 adult burn patients with a serum creatinine 140 ml(-1) min(-1) 1.73 m(-2)) was found in 13 patients younger than 40 years. Regression analysis, residual and Bland-Altman plots revealed that neither the Cockcroft-Gault, Robert, Kirkpatrick nor sMDRD equations were specific enough for the assessment of renal function. CONCLUSIONS: In burn patients with normal serum creatinine during the hypermetabolic phase, serum creatinine and creatine based predictive equations are imprecise in assessing renal function
    corecore