28 research outputs found

    Ultrasonic Wave Dispersion and Attenuation in Fluid Filled Porous Media

    Get PDF
    The study of ultrasonic wave propagation in granular materials can lead to a better understanding of wave interaction with such materials as uncured cement and concrete. The measured parameters can then be used to investigate the curing process in particular the time required for a given mixture to consolidate. The cohesionless granular materials having loose contact between the constituent grains form a matrix that has negligible shear modulus. Sediment, sandy ground and concrete before solidification can be considered as examples of cohesionless granular materials. The shear and rigidity moduli of these materials can differ greatly from the values obtained by effective medium theories. In particular these differences could affect the ultrasonic wave propagation in such a material. In the case of cohesionless granular material the complete description of mechanical properties requires the consideration of discrete nature of the solid frame and the contact areas between the grains. Therefore wave interaction with such a material should also include the above mentioned effects. The goal of this work is to investigate the ultrasonic wave dispersion and attenuation in cohesionless granular materials the results can be to applied to the monitoring of cement and concrete during the curing process

    Patterns of mitochondrial DNA instability in Brassica campestris cultured cells

    Full text link
    We previously showed that the mitochondrial DNA (mtDNA) of a Brassica campestris callus culture had undergone extensive rearrangements (i.e. large inversions and a duplication) relative to DNA of the control plant [54]. In this study we observed that after continued growth, the mtDNA of this culture continues to change, with rearranged forms amplifying and diminishing to varying proportions. Strikingly similar changes were detected in the mtDNA profiles of a variety of other long- and short-term callus and cell suspension lines. However, the proportions of parental (‘unrearranged’) and novel (‘rearranged’) forms varied in different cultured cell mtDNAs. To address the source of this heterogeneity, we compared the mtDNA organization of 28 individual plants from the parental seed stock. With the exception of one plant containing high levels of a novel plasmid-like mtDNA molecule, no significant variation was detected among individual plants and therefore source plant variation is unlikely to have contributed to the diversity of mitochondrial genomes observed in cultured cells. The source of this culture-induced heterogeneity was also investigated in 16 clones derived from single protoplasts. A mixed population of unrearranged and rearranged mtDNA molecules was apprent in each protoclone, suggesting that the observed heterogeneity in various cultures might reflect the genomic composition of each individual cell; however, the induction of an intercellular heterogeneity subsequent to the protoplast isolation was not tested and therefore cannot be ruled out. The results of this study support our earlier model that the rapid structural alteration of B. campestris mtDNA in vitro results from preferential amplification and reassortment of minor pre-existing forms of the genome rather than de novo rearrangement. Infrequent recombination between short dispersed repeated elements is proposed as the underlying mechanism for the formation of these minor mtDNA molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43428/1/11103_2004_Article_BF00017914.pd

    Vulnerability of island insect pollinator communities to pathogens

    Get PDF
    Island ecosystems, which often contain undescribed insects and small populations of single island endemics, are at risk from diverse threats. The spread of pathogens is a major factor affecting not just pollinator species themselves, but also posing significant knock-on effects to often fragile island ecosystems through disruption of pollination networks. Insects are vulnerable to diverse pathogens and these can be introduced to islands in a number of ways, e.g. via the introduction of infected managed pollinator hosts (e.g. honey bees and their viruses, in particular Deformed wing virus), long-range migrants (e.g. monarch butterflies and their protozoan parasite, Ophryocystit elektroscirrha) and invasive species (e.g. social wasps are common invaders and are frequently infected with multi-host viruses such as Kashmir bee virus and Moku virus). Furthermore, these introductions can negatively affect island ecosystems through outcompeting native taxa for resources. As such, the greatest threat to island pollinator communities is not one particular pathogen, but the combination of pathogens and introduced and invasive insects that will likely carry them. [Abstract copyright: Copyright © 2021 Elsevier Inc. All rights reserved.
    corecore