3 research outputs found

    The AgriRover : a reinvented mechatronic platform from space robotics for precision farming

    Get PDF
    This paper presents an investigation of a novel development of a multi-functional mobile platform for agriculture applications. This is achieved through a reinven-tion process of a mechatronic design by spinning off space robotic technologies in terrestrial applications in the AgriRover project. The AgriRover prototype is the first of its kind in exploiting and applying space robotic technologies in precision farming. To optimize energy consumption of the mobile platform, a new dynamic total cost of transport algorithm is proposed and validated. An autonomous navi-gation system has been developed to enable the AgriRover to operate safely in unstructured farming environments. An object recognition algorithm specific to agriculture- has been investigated and implemented. A novel soil sample collect-ing mechanism has been designed and prototyped for on-board and in-situ soil quality measurement. The design of the whole system has benefited from the use of a mechatronic design process known as the Tiv model through which a plane-tary exploration rover is reinvented into the AgriRover for agricultural applica-tions. The AgriRover system has gone through three sets of field trials in the UK and some of these results are reported

    An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring

    No full text
    This paper presents a novel approach for crop monitoring and 3D reconstruction. A mobile platform, based on a commercial electric vehicle, was developed and equipped with different on-board sensors for crop monitoring. Acceleration, braking and steering systems of the vehicle were automatized. Fuzzy control systems were implemented to achieve autonomous navigation. A low-cost RGB-D sensor, Microsoft Kinect v2 sensor, and a reflex camera were installed on-board the platform for creation of 3D crop maps. The modelling of the field was fully automatic based on algorithms for 3D reconstructions of large areas, such as a complete row crop. Important information can be estimated from a 3D model of the crop, such as the canopy volume. For that goal, the alpha-shape algorithm was proposed. The on-going developments presented in this paper arise as a promising tool to achieve better crop management increasing crop profitability while reducing agrochemical inputs and environmental impact.This work was financed by the Spanish Ministerio de Economía y Competitividad (AGL2014-52465-C4-3-R) and the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (AGL2017-83325-C4-1-R and AGL2017-83325-C4-3-R). Karla Cantuña thanks the service commission for the remuneration given by the Cotopaxi Technical University. The authors also wish to acknowledge the ongoing technical support of Damián Rodríguez.Peer reviewe

    Unmanned Ground Vehicles in Precision Farming Services: An Integrated Emulation Modelling Approach

    No full text
    Autonomous systems are a promising alternative for safely executing precision farming activities in a 24/7 perspective. In this context Unmanned Ground Vehicles (UGVs) are used in custom agricultural fields, with sophisticated sensors and data fusion techniques for real-time mapping and navigation. The aim of this study is to present a simulation software tool for providing effective and efficient farming activities in orchard fields and demonstrating the applicability of simulation in routing algorithms, hence increasing productivity, while dynamically addressing operational and tactical level uncertainties. The three dimensional virtual world includes the field layout and the static objects (orchard trees, obstacles, physical boundaries) and is constructed in the open source Gazebo simulation software while the Robot Operating System (ROS) and the implemented algorithms are tested using a custom vehicle. As a result a routing algorithm is executed and enables the UGV to pass through all the orchard trees while dynamically avoiding static and dynamic obstacles. Unlike existing sophisticated tools, the developed mechanism could accommodate an extensive variety of agricultural activities and could be transparently transferred from the simulation environment to real world ROS compatible UGVs providing user-friendly and highly customizable navigation
    corecore