70 research outputs found

    Membrane Fusion and Cell Entry of XMRV Are pH-Independent and Modulated by the Envelope Glycoprotein's Cytoplasmic Tail

    Get PDF
    Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus that was originally identified from human prostate cancer patients and subsequently linked to chronic fatigue syndrome. Recent studies showed that XMRV is a recombinant mouse retrovirus; hence, its association with human diseases has become questionable. Here, we demonstrated that XMRV envelope (Env)-mediated pseudoviral infection is not blocked by lysosomotropic agents and cellular protease inhibitors, suggesting that XMRV entry is not pH-dependent. The full length XMRV Env was unable to induce syncytia formation and cell-cell fusion, even in cells overexpressing the viral receptor, XPR1. However, truncation of the C-terminal 21 or 33 amino acid residues in the cytoplasmic tail (CT) of XMRV Env induced substantial membrane fusion, not only in the permissive 293 cells but also in the nonpermissive CHO cells that lack a functional XPR1 receptor. The increased fusion activities of these truncations correlated with their enhanced SU shedding into culture media, suggesting conformational changes in the ectodomain of XMRV Env. Noticeably, further truncation of the CT of XMRV Env proximal to the membrane-spanning domain severely impaired the Env fusogenicity, as well as dramatically decreased the Env incorporations into MoMLV oncoretroviral and HIV-1 lentiviral vectors resulting in greatly reduced viral transductions. Collectively, our studies reveal that XMRV entry does not require a low pH or low pH-dependent host proteases, and that the cytoplasmic tail of XMRV Env critically modulates membrane fusion and cell entry. Our data also imply that additional cellular factors besides XPR1 are likely to be involved in XMRV entry

    Susceptibility of the human retrovirus XMRV to antiretroviral inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>XMRV (xenotropic murine leukemia virus-related virus) is the first known example of an exogenous gammaretrovirus that can infect humans. A limited number of reports suggest that XMRV is intrinsically resistant to many of the antiretroviral drugs used to treat HIV-1 infection, but is sensitive to a small subset of these inhibitors. In the present study, we used a novel marker transfer assay to directly compare the antiviral drug sensitivities of XMRV and HIV-1 under identical conditions in the same host cell type.</p> <p>Results</p> <p>We extend the findings of previous studies by showing that, in addition to AZT and tenofovir, XMRV and HIV-1 are equally sensitive to AZddA (3'-azido-2',3'-dideoxyadenosine), AZddG (3'-azido-2',3'-dideoxyguanosine) and adefovir. These results indicate that specific 3'-azido or acyclic nucleoside analog inhibitors of HIV-1 reverse transcriptase (RT) also block XMRV infection with comparable efficacy <it>in vitro</it>. Our data confirm that XMRV is highly resistant to the non-nucleoside RT inhibitors nevirapine and efavirenz and to inhibitors of HIV-1 protease. In addition, we show that the integrase inhibitors raltegravir and elvitegravir are active against XMRV, with EC<sub>50 </sub>values in the nanomolar range.</p> <p>Conclusions</p> <p>Our analysis demonstrates that XMRV exhibits a distinct pattern of nucleoside analog susceptibility that correlates with the structure of the pseudosugar moiety and that XMRV is sensitive to a broader range of antiretroviral drugs than has previously been reported. We suggest that the divergent drug sensitivity profiles of XMRV and HIV-1 are partially explained by specific amino acid differences in their respective protease, RT and integrase sequences. Our data provide a basis for choosing specific antiretroviral drugs for clinical studies in XMRV-infected patients.</p

    Glutamatergic synaptic responses and long-term potentiation are impaired in the CA1 hippocampal area of calbindin D(28K)-deficient mice

    No full text
    The contribution of the cytosolic calcium binding protein calbindin D-28K (CaBP) to glutamatergic neurotransmission and synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice, with the use of extracellular recordings in the ex vivo slice preparation. The amplitude of non-N-methyl-D-aspartate receptor (non-NMDAr)-mediated extracellular field excitatory postsynaptic potentials (fEPSPs) recorded in control medium was significantly greater in CaBP-deficient mice, whereas the afferent fiber volley was not affected. In contrast, the amplitude of NMDAr-mediated fEPSPs isolated in a magnesium-free medium after blockade of non-NMDAr and GABAergic receptors was significantly depressed in these animals. No alteration in the magnitude of paired-pulse facilitation was found, indicating that the presynaptic calcium mechanisms controlling glutamate release were not altered in CaBP-deficient mice. The magnitude and time course of the short-term potentiation (STP) of fEPSPs induced by a 30 Hz conditioning stimulation, which was blocked by the NMDAr antagonist 2-amino-5-phosphonovalerate acid (2-APV), was not impaired in the transgenic mice, whereas long-term potentiation (LTP) induced by a 100 Hz tetanus was not maintained. The long-term. depression (LTD) induced by low-frequency stimulation (1 Hz, 15 min) in the presence of the GABA antagonist bicuculline was not altered. These results argue for a contribution of CaBP to the mechanisms responsible for the maintenance of long-term synaptic potentiation, at least in part by modulating the activation of NMDA receptors.The contribution of the cytosolic calcium binding protein calbindin D(28K) (CaBP) to glutamatergic neurotransmission and synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice, with the use of extracellular recordings in the ex vivo slice preparation. The amplitude of non-N-methyl-D-aspartate receptor (non- NMDAr)-mediated extracellular field excitatory postsynaptic potentials (fEPSPs) recorded in control medium was significantly greater in CaBP- deficient mice, whereas the afferent fiber volley was not affected. In contrast, the amplitude of NMDAr-mediated fEPSPs isolated in a magnesium-free medium after blockade of non-NMDAr and GABAergic receptors was significantly depressed in these animals. No alteration in the magnitude of paired-pulse facilitation was found, indicating that the presynaptic calcium mechanisms controlling glutamate release were not altered in CaBP-deficient mice. The magnitude and time course of the short-term potentiation (STP) of fEPSPs induced by a 30 Hz conditioning stimulation, which was blocked by the NMDAr antagonist 2-amino-5-phosphonovalerate acid (2APV), was not impaired in the transgenic mice, whereas long-term potentiation (LTP) induced by a 100 Hz tetanus was not maintained. The long-term depression (LTD) induced by low- frequency stimulation (1 Hz, 15 min) in the presence of the GABA antagonist bicuculline was not altered. These results argue for a contribution of CaBP to the mechanisms responsible for the maintenance of long-term synaptic potentiation, at least in part by modulating the activation of NMDA receptors

    Phytoserotonin: A review

    No full text
    Serotonin (5-hydroxytryptamine; SER) is one of the well-studied indoleamine neurotransmitters in vertebrates. Recently SER has also been reported in wide range of plant species. The precise function of SER at the physiological level, particularly growth regulation, flowering, xylem sap exudation, ion permeability and plant morphogenesis in plant system has not been clear. Though SER is found in different parts of plant species including leaves, stems, roots, fruits and seeds, the quantity of SER within plant tissues varies widely. SER has been recently shown as a plant hormone in view of its auxin-like activity. This brief review provides an overview of SER biosynthesis, localization, its role in plant morphogenesis and possible physiological functions in plants. This would certainly help to elucidate further the multiple roles of SER in plant morphogenesis. In the future it may form the basis for studies on involvement of SER in cellular signaling mechanisms in plants. Apart from these gaps in understanding the role of SER in ontogeny of plant physiology and ecological, adaptations have been emphasized. Thus, overall perspectives in this area of research and its possible implications have been presented
    corecore