315 research outputs found

    Time evolution of entanglement entropy from a pulse

    Full text link
    We calculate the time evolution of the entanglement entropy in a 1+1 CFT with a holographic dual when there is a localized left-moving packet of energy density. We find the gravity result agrees with a field theory result derived from the transformation properties of R\'enyi entropy. We are able to reproduce behavior which qualitatively agrees with CFT results of entanglement entropy of a system subjected to a local quench. In doing so we construct a finite diffeomorphism which tales three-dimensional anti-de Sitter space in the Poincar\'e patch to a general solution, generalizing the diffeomorphism that takes the Poincar\'e patch a BTZ black hole. We briefly discuss the calculation of correlation functions in these backgrounds and give results at large operator dimension.Comment: 18 pages, 6 figure

    Variational Analysis Down Under Open Problem Session

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. We state the problems discussed in the open problem session at Variational Analysis Down Under conference held in honour of Prof. Asen Dontchev on 19–21 February 2018 at Federation University Australia

    Fast Scramblers, Horizons and Expander Graphs

    Full text link
    We propose that local quantum systems defined on expander graphs provide a simple microscopic model for thermalization on quantum horizons. Such systems are automatically fast scramblers and are motivated from the membrane paradigm by a conformal transformation to the so-called optical metric.Comment: 22 pages, 2 figures. Added further discussion in section 3. Added reference

    Conformal Quivers and Melting Molecules

    Get PDF
    Quiver quantum mechanics describes the low energy dynamics of a system of wrapped D-branes. It captures several aspects of single and multicentered BPS black hole geometries in four-dimensional N=2\mathcal{N} = 2 supergravity such as the presence of bound states and an exponential growth of microstates. The Coulomb branch of an Abelian three node quiver is obtained by integrating out the massive strings connecting the D-particles. It allows for a scaling regime corresponding to a deep AdS2_2 throat on the gravity side. In this scaling regime, the Coulomb branch is shown to be an SL(2,R)SL(2,\mathbb{R}) invariant multi-particle superconformal quantum mechanics. Finally, we integrate out the strings at finite temperature---rather than in their ground state---and show how the Coulomb branch `melts' into the Higgs branch at high enough temperatures. For scaling solutions the melting occurs for arbitrarily small temperatures, whereas bound states can be metastable and thus long lived. Throughout the paper, we discuss how far the analogy between the quiver model and the gravity picture, particularly within the AdS2_2 throat, can be taken.Comment: 49 pages, 16 figure

    Effectiveness of a clinical pathway for acute stroke care in a district general hospital: an audit

    Get PDF
    BACKGROUND: Organised stroke care saves lives and reduces disability. A clinical pathway might be a form of organised stroke care, but the evidence for the effectiveness of this model of care is limited. METHODS: This study was a retrospective audit study of consecutive stroke admissions in the setting of an acute general medical unit in a district general hospital. The case-notes of patients admitted with stroke for a 6-month period before and after introduction of the pathway, were reviewed to determine data on length of stay, outcome, functional status, (Barthel Index, BI and Modified Rankin Scale, MRS), Oxfordshire Community Stroke Project (OCSP) sub-type, use of investigations, specific management issues and secondary prevention strategies. Logistic regression was used to adjust for differences in case-mix. RESULTS: N = 77 (prior to the pathway) and 76 (following the pathway). The median (interquartile range, IQR) age was 78 years (67.75–84.25), 88% were European NZ and 37% were male. The median (IQR) BI at admission for the pre-pathway group was less than the post-pathway group: 6 (0–13.5) vs. 10 (4–15.5), p = 0.018 but other baseline variables were statistically similar. There were no significant differences between any of the outcome or process of care variables, except that echocardiograms were done less frequently after the pathway was introduced. A good outcome (MRS<4) was obtained in 66.2% prior to the pathway and 67.1% after the pathway. In-hospital mortality was 20.8% and 23.1%. However, using logistic regression to adjust for the differences in admission BI, it appeared that admission after the pathway was introduced had a significant negative effect on the probability of good outcome (OR 0.29, 95%CI 0.09-0.99). CONCLUSION: A clinical pathway for acute stroke management appeared to have no benefit for the outcome or processes of care and may even have been associated with worse outcomes. These data support the conclusions of a recent Cochrane review

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Towards the fast scrambling conjecture

    Get PDF
    Many proposed quantum mechanical models of black holes include highly nonlocal interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.Comment: 34 pages. v2: typo correcte

    The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass

    Get PDF
    Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples - age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the "missing link in the chain", since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows to determine stellar masses and ages with the accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g < 3.5, -2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Halpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows to obtain simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies like Andromeda or the Magellanic Clouds already with present instrumentation, like VLT and Keck facilities
    • 

    corecore