197 research outputs found

    g-Functions and gluon scattering amplitudes at strong coupling

    Get PDF
    We study gluon scattering amplitudes/Wilson loops in N=4 super Yang-Mills theory at strong coupling by calculating the area of the minimal surfaces in AdS_3 based on the associated thermodynamic Bethe ansatz system. The remainder function of the amplitudes is computed by evaluating the free energy, the T- and Y-functions of the homogeneous sine-Gordon model. Using conformal field theory (CFT) perturbation, we examine the mass corrections to the free energy around the CFT point corresponding to the regular polygonal Wilson loop. Based on the equivalence between the T-functions and the g-functions, which measure the boundary entropy, we calculate corrections to the T- and Y-functions as well as express them at the CFT point by the modular S-matrix. We evaluate the remainder function around the CFT point for 8 and 10-point amplitudes explicitly and compare these analytic expressions with the 2-loop formulas. The two rescaled remainder functions show very similar power series structures.Comment: 51 pages, 4 figures, v2: some comments and references added, based on the published version, v3: minor change

    Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS_3

    Get PDF
    We study classical open string solutions with a null polygonal boundary in AdS_3 in relation to gluon scattering amplitudes in N=4 super Yang-Mills at strong coupling. We derive in full detail the set of integral equations governing the decagonal and the dodecagonal solutions and identify them with the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon models. By evaluating the free energy in the conformal limit we compute the central charges, from which we observe general correspondence between the polygonal solutions in AdS_n and generalized parafermions.Comment: 25 pages, 4 figures, v2: a figure and references added, minor corrections, v3: references added, minor corrections, to appear in JHE

    Alleviating the non-ultralocality of coset sigma models through a generalized Faddeev-Reshetikhin procedure

    Get PDF
    The Faddeev-Reshetikhin procedure corresponds to a removal of the non-ultralocality of the classical SU(2) principal chiral model. It is realized by defining another field theory, which has the same Lax pair and equations of motion but a different Poisson structure and Hamiltonian. Following earlier work of M. Semenov-Tian-Shansky and A. Sevostyanov, we show how it is possible to alleviate in a similar way the non-ultralocality of symmetric space sigma models. The equivalence of the equations of motion holds only at the level of the Pohlmeyer reduction of these models, which corresponds to symmetric space sine-Gordon models. This work therefore shows indirectly that symmetric space sine-Gordon models, defined by a gauged Wess-Zumino-Witten action with an integrable potential, have a mild non-ultralocality. The first step needed to construct an integrable discretization of these models is performed by determining the discrete analogue of the Poisson algebra of their Lax matrices.Comment: 31 pages; v2: minor change

    Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida

    Get PDF
    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC) and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1) bacteriostatic and bactericidal levels of kill; (2) for 50 and 90% target attainment rates (TAR); and (3) for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida) and 44.7 and 86.6 mg/kg (A. pleuropneumoniae). For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida) and 18.2 and 35.2 mg/kg (A. pleuropneumoniae) were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points

    Boundary operators in minimal Liouville gravity and matrix models

    Full text link
    We interpret the matrix boundaries of the one matrix model (1MM) recently constructed by two of the authors as an outcome of a relation among FZZT branes. In the double scaling limit, the 1MM is described by the (2,2p+1) minimal Liouville gravity. These matrix operators are shown to create a boundary with matter boundary conditions given by the Cardy states. We also demonstrate a recursion relation among the matrix disc correlator with two different boundaries. This construction is then extended to the two matrix model and the disc correlator with two boundaries is compared with the Liouville boundary two point functions. In addition, the realization within the matrix model of several symmetries among FZZT branes is discussed.Comment: 26 page

    On holographic three point functions for GKP strings from integrability

    Full text link
    Adapting the powerful integrability-based formalism invented previously for the calculation of gluon scattering amplitudes at strong coupling, we develop a method for computing the holographic three point functions for the large spin limit of Gubser-Klebanov- Polyakov (GKP) strings. Although many of the ideas from the gluon scattering problem can be transplanted with minor modifications, the fact that the information of the external states is now encoded in the singularities at the vertex insertion points necessitates several new techniques. Notably, we develop a new generalized Riemann bilinear identity, which allows one to express the area integral in terms of appropriate contour integrals in the presence of such singularities. We also give some general discussions on how semiclassical vertex operators for heavy string states should be constructed systematically from the solutions of the Hamilton-Jacobi equation.Comment: 62 pages;v2 Typos and equation (3.7) corrected. Clarifying remarks added in Section 4.1. Published version;v3 Minor errors found in version 2 are corrected. For explanation of the revision, see Erratum published in http://www.springerlink.com/content/m67055235407vx67/?MUD=M

    Wave functions and correlation functions for GKP strings from integrability

    Full text link
    We develop a general method of computing the contribution of the vertex operators to the semi-classical correlation functions of heavy string states, based on the state-operator correspondence and the integrable structure of the system. Our method requires only the knowledge of the local behavior of the saddle point configuration around each vertex insertion point and can be applied to cases where the precise forms of the vertex operators are not known. As an important application, we compute the contributions of the vertex operators to the three-point functions of the large spin limit of the Gubser-Klebanov-Polyakov (GKP) strings in AdS3AdS_3 spacetime, left unevaluated in our previous work [arXiv:1110.3949] which initiated such a study. Combining with the finite part of the action already computed previously and with the newly evaluated divergent part of the action, we obtain finite three-point functions with the expected dependence of the target space boundary coordinates on the dilatation charge and the spin.Comment: 80 pages, 7 figures, v2: typos and minor errors corrected, a reference added, v3: typos and a reference corrected, published versio

    Exploring the mirror TBA

    Full text link
    We apply the contour deformation trick to the Thermodynamic Bethe Ansatz equations for the AdS_5 \times S^5 mirror model, and obtain the integral equations determining the energy of two-particle excited states dual to N=4 SYM operators from the sl(2) sector. We show that each state/operator is described by its own set of TBA equations. Moreover, we provide evidence that for each state there are infinitely-many critical values of 't Hooft coupling constant \lambda, and the excited states integral equations have to be modified each time one crosses one of those. In particular, estimation based on the large L asymptotic solution gives \lambda \approx 774 for the first critical value corresponding to the Konishi operator. Our results indicate that the related calculations and conclusions of Gromov, Kazakov and Vieira should be interpreted with caution. The phenomenon we discuss might potentially explain the mismatch between their recent computation of the scaling dimension of the Konishi operator and the one done by Roiban and Tseytlin by using the string theory sigma model.Comment: 69 pages, v2: new "hybrid" equations for YQ-functions, figures and tables are added. Analyticity of Y-system is discussed, v3: published versio

    On the reflection of magnon bound states

    Full text link
    We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS_5 x S^5 string sigma model, for large angular momentum J=J_56 and ending on a D7 brane which wraps the entire AdS_5 and a maximal S^3 of S^5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.Comment: 35 pages, v2: few typos and ref corrected, accepted for publication in JHE

    The Bajnok-Janik formula and wrapping corrections

    Full text link
    We write down the simplified TBA equations of the AdS5×S5AdS_5 \times S^5 string sigma-model for minimal energy twist-two operators in the sl(2) sector of the model. By using the linearized version of these TBA equations it is shown that the wrapping corrected Bethe equations for these states are identical, up to O(g^8), to the Bethe equations calculated in the generalized L\"uscher approach (Bajnok-Janik formula). Applications of the Bajnok-Janik formula to relativistic integrable models, the nonlinear O(n) sigma models for n=2,3,4 and the SU(n) principal sigma models, are also discussed.Comment: Latex, 22 pages, published versio
    corecore