3 research outputs found

    PhenoImageShare:an image annotation and query infrastructure

    Get PDF
    BACKGROUND: High throughput imaging is now available to many groups and it is possible to generate a large quantity of high quality images quickly. Managing this data, consistently annotating it, or making it available to the community are all challenges that come with these methods. RESULTS: PhenoImageShare provides an ontology-enabled lightweight image data query, annotation service and a single point of access backed by a Solr server for programmatic access to an integrated image collection enabling improved community access. PhenoImageShare also provides an easy to use online image annotation tool with functionality to draw regions of interest on images and to annotate them with terms from an autosuggest-enabled ontology-lookup widget. The provenance of each image, and annotation, is kept and links to original resources are provided. The semantic and intuitive search interface is species and imaging technology neutral. PhenoImageShare now provides access to annotation for over 100,000 images for 2 species. CONCLUSION: The PhenoImageShare platform provides underlying infrastructure for both programmatic access and user-facing tools for biologists enabling the query and annotation of federated images. PhenoImageShare is accessible online at http://www.phenoimageshare.org

    Accommodating Ontologies to Biological Reality—Top-Level Categories of Cumulative-Constitutively Organized Material Entities

    Get PDF
    BACKGROUND: The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO's three top-level categories of material entity (i.e. ‘object’, ‘fiat object part’, ‘object aggregate’) must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity. METHODOLOGY/PRINCIPAL FINDINGS: Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for ‘portion of matter’ as another material building block. This implies the necessity for further extending BFO by ‘portion of matter’ as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities. CONCLUSIONS/SIGNIFICANCE: We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle
    corecore